Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex-pheromone link to insect evolution

11.09.2002


Cornell University entomologists have unlocked an evolutionary secret to how insects evolve into new species. The discovery has major implications for the control of insect populations through disruption of mating, suggesting that over time current eradication methods could become ineffective, similar to the way insects develop pesticide resistance.



The researchers, led by Wendell L. Roelofs, the Liberty Hyde Bailey Professor of Insect Biochemistry at Cornell, made the discovery while examining ways to keep European corn borers from mating, multiplying and then chewing up farmers’ fields. They discovered the existence of a previously undetected gene, the delta-14, that can regulate the attractant chemicals produced in sex-pheromone glands of female borers. The gene can be suddenly switched on, changing the pheromone components that females use to attract males for mating.

The entomologists have demonstrated that insects evolve chemical systems in leaps rather than in minute stages, as had been previously assumed. The researchers also discovered that there are rare males in the corn borer population -- about 1 in 200 -- capable of responding to chemicals produced by the delta-14 gene.


"This is one way that insects become new species," says Roelofs, whose paper, "Evolution of moth sex pheromones via ancestral genes," will be published on the web site of the Proceedings of the National Academy of Science (Sept. 9-15, 2002.) The Cornell co-authors on the paper are: Weitian Liu, research associate in entomology; Guixia Hao, postdoctoral researcher in entomology; Hongmei Jiao, laboratory technician in entomology; and Charles E. Linn Jr., senior research associate in entomology. Alejandro P. Rooney, Mississippi State University assistant professor in biological sciences also contributed to the paper. The research was funded by the National Science Foundation and will continue to be funded by the U.S. Department of Agriculture’s National Research Initiative.Roelofs explains that female insects attract males with specialized pheromones that he compares to radio frequencies. At major events with thousands of people, for instance, police might communicate on channel one, emergency medical personnel on channel two and administrators on channel three.

"With male and female borers, it’s the same thing," says Roelofs. "Certain species communicate on channel one, others on channel two, others on channel three. But when a female has a mutated delta-14 gene -- and by mutated I mean the gene is turned on -- it changes her channel from three to five. That means that out of 200 male borers, 199 cannot respond to her. It’s the one male borer capable of responding to her very selective channel that sets out to mate."

Soon other females with the delta-14 gene mate with other rare respondent males. Eventually, over time, the males and females stabilize their pheromone communication system, essentially isolating this new population from the parent species. "That’s one way species evolve," Roelofs says.

Manipulation of insect chemistry is an effective pest control strategy in that it can be used to disrupt mating behavior. For more than 20 years, Roelofs’ research at Cornell’s New York State Agricultural Experiment Station in Geneva has focused on chemical analyses of the pheromone components. Agricultural researchers have identified pheromones in over 1,000 species of insects and use them to monitor pest populations in 250 species and to disrupt mating in more than 20 species, Roelofs says.

This new research has implications for pest control. In addition to explaining how pheromone evolution might have occurred in the past, the paper also demonstrates that the conditions required for dramatic shifts in pheromone blends could well be present today and in the future. Insect populations could be capable of shifting away from a pheromone blend being used for their control in the field, making such control ineffective.

"Based on the difficulty of generating even small changes in pheromone blends in the lab, we thought that such resistance could not develop because natural pressure would prevent the species from gradually shifting to a different blend," says Roelofs. The presence of this kind of gene, capable of sudden activation, might provide a mechanism for resistance to occur, although no evidence for this has been found so far, he notes.

Roelofs expects this discovery to stimulate more research in this area, specifically to determine the breadth of the phenomenon and how it affects the evolution of many insect communication systems. His research team will be working on the genomes of fruit flies, mosquitoes, crickets and silkworms to detect if these kinds of genes are present.

Blaine P. Friedlander, Jr. | Cornell University News Service

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>