Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Researchers Decipher Learning Processes in Mice

29.08.2002


Protein phosphatase 1 (PP1) belongs to a group of molecules that on the basis of earlier studies has been proposed to be a controlling factor for learning and memory. The ETH researchers produced genetically modified mice in which the activity of PP1 can be reduced at will. These animals were subjected to various learning and memory tests in one of which, the mice had to learn about various objects in a box. For this, they were trained on different schedules: without any interruption during learning or with short or long interruptions. To study how well the mice could remember the objects after learning, they were placed back into the box and one of the objects had been replaced with a novel object. If the animals explored the novel object significantly longer than the others, this was an indication that the mice remembered the familiar objects.



Protein Phosphatase 1 Makes Learning More Difficult

The tests showed that the mice with reduced PP1 and with short interruptions in the learning process achieved optimal performance that could be reached by control animals only with long interruptions. Isabelle Mansuy’s interpretation of these results is that “PP1 represents a necessary controlling factor, that is required to avoid saturation of the brain. Because the capacity of the brain is limited, it needs an active protective system”.


In order to determine whether PP1 has a general effect in learning, the research group carried out another set of experiments using a test that challenges spatial orientation. In a tub of water, the mice had to find a platform located just below the surface of the water which was made opaque. The mice with reduced PP1 needed fewer training trials to learn the platform position than the control animals.

Promoting Forgetting

Then the mice’s memory was tested. Two weeks after training the mice with normal PP1 function found the platform less easily than immediately after training. But those whose PP1 function was suppressed remembered its position surprisingly well and up to eight weeks after learning. This speaks for the fact that PP1 not only makes learning more difficult, but it also actively promotes forgetting. This effect appears to be prominent in aged individuals as those with less PP1 had improved performance. The data suggest that the suppression of PP1 may protect against memory decline. “The tests with the aged mice show that cognitive abilities may be rescued”, comments Isabelle Mansuy. This is especially interesting since it is known that aged mice have more PP1. The findings therefore indicate that learning difficulties and decline of memory in old age are not necessarily unavoidable, irreversible processes.

Prof. Isabelle Mansuy | alfa
Further information:
http://www.cc.ethz.ch/medieninfo

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>