Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pythons can be couch potatoes, too

26.08.2002


UCI researchers find that consumption of certain food types cause the constricting reptile to expend excessive energy in digestion



Gary Larson, creator of "The Far Side," is noted for morphing animal scientific attributes into human behavior in his comic strips. Consider the sketch of a family of pythons lying about after Thanksgiving dinner. The snakes that consumed a mouse, some chicken and glucose are ready to go out and play football shortly after dining. But the pythons that indulged on the starchy foods cannot budge from the couch, still trying to digest their meal.

A scene from a Larson cartoon? Perhaps. But it is also a notion based in scientific fact.


A team of UC Irvine researchers has found that pythons use significantly more energy to digest proteins than they do carbohydrates, revealing that metabolic rates needed for digestion are based on the content of the food instead of the volume. The findings also provide more information on understanding how other animals - and humans - metabolize food and the importance of their diet.

Marshall McCue, Albert Bennett and James Hicks, researchers in the Department of Ecology and Evolutionary Biology at UCI, will present these findings at the American Physiological Society intersociety meeting on Tuesday, Aug. 27, in San Diego, Calif. The researchers tested pythons to determine the reptiles’ specific dynamic action (SDA), which is the metabolic increment associated with a python’s digestion, assimilation and excretion of specific foods. SDA is determined not by how much a python eats, but what it eats. Moreover, the energy required for a certain level of SDA accounts for a large energy expenditure that may reduce the energy available for other activities. The researchers used pythons because their metabolic rates vary drastically from when they are at rest, to when they are digesting.

Hatchling Burmese pythons were raised in the laboratory on a diet of mice and rats for four months prior to experiments. The pythons were then fed various meals of proteins, carbohydrates and lipids. Protein meals consisted of lean chicken breast meat, casein, collagen and gelatin. Carbohydrate meals included two complex (wheat starch, cellulose) and two simple carbohydrates (D-glucose, sucrose). Lipid meals consisted of lard and beef suet. Meal volumes were varied and feeding treatments were randomly assigned to each individual python.

The post feeding metabolic responses for each of the 11 experimental meals were combined and compared with their standard metabolic rate.

The key findings from this experiment were:


Mean masses of eight pythons before and after experiment did not change significantly.

Mouse, chicken, casein, collagen, glucose and sucrose meals induced an SDA response; gelatin, suet, lard, cellulose and starch did not induce SDA.

SDA responses induced by meals with the largest and smallest volumes were not statistically different;
intermediate meals induced the greatest SDA.

Gelatin appeared to be assimilated but did not cause a significant SDA response.

Collagen caused an SDA response; however it was always completely regurgitated several days following ingestion.

Protein meals that induced the greatest SDA (casein, mouse, and chicken breast) were also those highest in essential amino acids.

The results revealed that single and dual element sugars caused the pythons’ metabolic rate to increase two-fold. However, complex carbohydrates were unable to elicit a significant metabolic response and were not assimilated by the snakes. Protein meals caused variable SDA responses that appeared to be related to the amino acid composition of the specific meals. Casein caused a four-fold increase in metabolism, while gelatin caused no detectible changes and was not assimilated. Various lipid meals did not cause any significant change in oxygen consumption and were generally not assimilated.

The findings suggest that a large serving of one particular type of food probably does not trigger the large SDA increment well known in this species. The researchers’ next steps are to investigate SDA induced by specific amino acids and amino acid mixtures and digestive assimilation efficiency of meals that induce SDA.

Essentially, pythons are governed by physiological principles that encourage consumption of specific foods to optimize their metabolic rate and to allow energy expenditure for activities other than digestion.

Tom Vasich | EurekAlert!
Further information:
http://www.the-aps.org/publications/journals/tphys/2002html/Aug02/compmtg/online_program.pdf
http://www.the-aps.org/meetings/aps/san_diego/home.htm
http://www.today.uci.edu

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>