Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pythons can be couch potatoes, too

26.08.2002


UCI researchers find that consumption of certain food types cause the constricting reptile to expend excessive energy in digestion



Gary Larson, creator of "The Far Side," is noted for morphing animal scientific attributes into human behavior in his comic strips. Consider the sketch of a family of pythons lying about after Thanksgiving dinner. The snakes that consumed a mouse, some chicken and glucose are ready to go out and play football shortly after dining. But the pythons that indulged on the starchy foods cannot budge from the couch, still trying to digest their meal.

A scene from a Larson cartoon? Perhaps. But it is also a notion based in scientific fact.


A team of UC Irvine researchers has found that pythons use significantly more energy to digest proteins than they do carbohydrates, revealing that metabolic rates needed for digestion are based on the content of the food instead of the volume. The findings also provide more information on understanding how other animals - and humans - metabolize food and the importance of their diet.

Marshall McCue, Albert Bennett and James Hicks, researchers in the Department of Ecology and Evolutionary Biology at UCI, will present these findings at the American Physiological Society intersociety meeting on Tuesday, Aug. 27, in San Diego, Calif. The researchers tested pythons to determine the reptiles’ specific dynamic action (SDA), which is the metabolic increment associated with a python’s digestion, assimilation and excretion of specific foods. SDA is determined not by how much a python eats, but what it eats. Moreover, the energy required for a certain level of SDA accounts for a large energy expenditure that may reduce the energy available for other activities. The researchers used pythons because their metabolic rates vary drastically from when they are at rest, to when they are digesting.

Hatchling Burmese pythons were raised in the laboratory on a diet of mice and rats for four months prior to experiments. The pythons were then fed various meals of proteins, carbohydrates and lipids. Protein meals consisted of lean chicken breast meat, casein, collagen and gelatin. Carbohydrate meals included two complex (wheat starch, cellulose) and two simple carbohydrates (D-glucose, sucrose). Lipid meals consisted of lard and beef suet. Meal volumes were varied and feeding treatments were randomly assigned to each individual python.

The post feeding metabolic responses for each of the 11 experimental meals were combined and compared with their standard metabolic rate.

The key findings from this experiment were:


Mean masses of eight pythons before and after experiment did not change significantly.

Mouse, chicken, casein, collagen, glucose and sucrose meals induced an SDA response; gelatin, suet, lard, cellulose and starch did not induce SDA.

SDA responses induced by meals with the largest and smallest volumes were not statistically different;
intermediate meals induced the greatest SDA.

Gelatin appeared to be assimilated but did not cause a significant SDA response.

Collagen caused an SDA response; however it was always completely regurgitated several days following ingestion.

Protein meals that induced the greatest SDA (casein, mouse, and chicken breast) were also those highest in essential amino acids.

The results revealed that single and dual element sugars caused the pythons’ metabolic rate to increase two-fold. However, complex carbohydrates were unable to elicit a significant metabolic response and were not assimilated by the snakes. Protein meals caused variable SDA responses that appeared to be related to the amino acid composition of the specific meals. Casein caused a four-fold increase in metabolism, while gelatin caused no detectible changes and was not assimilated. Various lipid meals did not cause any significant change in oxygen consumption and were generally not assimilated.

The findings suggest that a large serving of one particular type of food probably does not trigger the large SDA increment well known in this species. The researchers’ next steps are to investigate SDA induced by specific amino acids and amino acid mixtures and digestive assimilation efficiency of meals that induce SDA.

Essentially, pythons are governed by physiological principles that encourage consumption of specific foods to optimize their metabolic rate and to allow energy expenditure for activities other than digestion.

Tom Vasich | EurekAlert!
Further information:
http://www.the-aps.org/publications/journals/tphys/2002html/Aug02/compmtg/online_program.pdf
http://www.the-aps.org/meetings/aps/san_diego/home.htm
http://www.today.uci.edu

More articles from Life Sciences:

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>