Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how herpes tricks the immune system

21.08.2002


Herpes viruses enter the body and hide away in cells, often re-emerging later to cause illnesses such as shingles, genital herpes and cancer. How these viruses evade the immune system remains poorly understood, but researchers at Washington University School of Medicine in St. Louis discovered that a mouse herpes virus uses molecules that mimic a cell’s own proteins to help thwart an immune attack.



The findings also suggest that a branch of the immune system known as the complement system may play a more important role in controlling herpes virus infections than previously thought. The study is published in the August issue of the journal Immunity.

"These findings reveal another molecular mechanism by which viruses evade the immune system," says study leader Herbert W. Virgin, M.D., Ph.D., professor of pathology and immunology and of molecular microbiology. "By targeting this viral protein or by manipulating the complement system, perhaps someday we can develop better treatments for herpes virus infections."


The complement system consists of about 20 different proteins that are transported in the bloodstream. When activated by certain disease-causing organisms, the proteins unite and collect on viruses or on the membranes of virus-infected cells and kill them by punching holes in the membranes. To help prevent the inadvertent and dangerous triggering of this complement reaction, healthy cells produce molecules known as regulators of complement activation (RCA).

Virgin’s team found that one type of herpes virus makes its own version of RCA to trick the immune system and evade destruction by complement, but that the RCA mimic proteins help the virus only during acute infection.

The researchers used a mouse virus called gamma-herpes virus 68 (gHV68), which is similar to Epstein Barr virus and the herpes virus that causes Kaposi’s sarcoma, a cancer that occurs in some people with immune deficiency. The team engineered a mutant strain of the mouse virus that lacked the RCA mimic protein. They compared the effects of the normal virus and the mutant virus on normal mice versus mice that lacked a key complement protein, C3.

The researchers found that viruses lacking an RCA mimic were far less virulent than the normal virus: It took 100 times more of the mutant virus to cause disease in healthy mice compared to normal virus. The mutant virus also grew 27 times slower than normal, and it failed to spread to other organs during acute infection. This showed that the RCA mimic proteins were necessary for the virus to thrive.

Next, the researchers tested the mutant virus in mice lacking C3. In this case, the mutant virus was just as virulent as normal viruses in normal mice. Without C3 in the infected animal, the virus did not need to disguise itself with RCA in order to thrive. This implies that, in normal mice, the mimic protein enabled the virus to escape detection by the complement system.

The investigators then explored the role of complement and RCA during persistent and chronic infections. Historically, scientists believed that the body uses the complement system only during the initial, or acute, phase of herpes virus infection. Chronic stages of infection, they thought, were fought by immune system components such as T cells, B cells and interferons.

Persistent infection occurs when the virus continues to replicate beyond the period of acute infection. It is most clearly seen when the immune system is seriously impaired. Latent infection occurs when the virus resides inactively in cells, but it can be reactivated to generate infectious virus.

The researchers found that while healthy mice infected with gHV68 rarely showed signs of persistent infection, this condition readily occurred in C3-deficient mice. This was evidence that complement helped control this phase of infection.

They also discovered that complement helps control latent infection. Using special tests that reactivate latent viruses, the team found that three to five times more virus could be reactivated in C3-deficient mice than in normal mice.

"Our findings explicitly show that complement plays a role during persistent and latent infection, and that was unexpected," says Virgin. "They also emphasize that we can’t study a viral protein during just one part of a virus’s life cycle and assume we understand the function of that protein. It’s important to look at it during all phases of infection."


###
Kapadia SB, Levine B, Speck SH, Virgin HW IV. Critical role of complement and viral evasion of complement in acute, persistent, and latent g-herpes virus infection. Immunity, 17, 1-20, August 2002.

Funding from the National Institute of Allergy and Infectious Diseases, the National Cancer Institute and a training grant from the Cancer Research Institute supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Neuronal circuits in the brain 'sense' our inner state
15.07.2020 | Technische Universität München

nachricht Novel test method detects coronavirus in highly diluted gargle samples
15.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new path for electron optics in solid-state systems

A novel mechanism for electron optics in two-dimensional solid-state systems opens up a route to engineering quantum-optical phenomena in a variety of materials

Electrons can interfere in the same manner as water, acoustical or light waves do. When exploited in solid-state materials, such effects promise novel...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

When Concrete learns to pre-stress itself

15.07.2020 | Architecture and Construction

New lithium battery charges faster, reduces risk of device explosions

15.07.2020 | Power and Electrical Engineering

A new path for electron optics in solid-state systems

15.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>