Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers identify multi-tasking circadian protein

07.08.2002


Dartmouth Medical School geneticists have found a molecular shortcut from light reception to gene activation in their work to understand biological clocks. Their research has revealed that the protein called White Collar-1 does double duty: it perceives light and then, in response to light, directly turns on a key gene called frequency, which is a central component of the clock.



Biological clocks are molecularly driven and are set, or synchronized, by the daily cycles of light and dark. Using the fungus Neurospora, the Dartmouth team is studying how organisms keep track of time using this internal clock.

"What we have discovered is that a protein called White Collar-1 is both the photoreceptor and the mechanism that turns on the frequency gene, all in one molecule,” explains Allan Froehlich, the lead author. “It’s the combination of the two activities that is so interesting.”


The findings, by Professors Jay Dunlap and Jennifer Loros, graduate student Allan Froehlich, and post-doctoral fellow Yi Liu, now on the faculty at the University of Texas Southwestern Medical Center, was published in the Aug. 2 issue of Science; the study was reported online in the July 4, 2002, issue of Sciencexpress. The Dunlap and Loros laboratories have made numerous contributions to understanding the genetic foundation for biological clocks.

Researchers, working with a variety of organisms, have already begun to understand how photoreceptor proteins perceive light at the molecular level and then pass on this information through a complex series of proteins. However, this finding with the White Collar-1 protein reveals a relatively simple process between a light-perceiving protein and turning on a gene.

“Virtually nothing is known about how pathogenic fungi respond to light or whether our discovery can be exploited for a noninvasive medical therapy,” Dunlap says. “But, if you want to do therapy—antifungal, antibacterial or anything—you start looking for biochemical activities that the host does not have that can be targeted to the pathogen.”

Froehlich, working with Dunlap and Loros, built on their discovery that the gene frequency encodes a central cog of the biological clock and that light resets the clock through frequency. He then determined that the clock proteins White Collar-1 and White Collar-2 bind to the specific parts of frequency that turn on frequency in response to light. And finally, he showed that under appropriate biochemical conditions WC-1 was the actual photoreceptor protein.

“The next step is to continue to understand how the proteins work,” says Froehlich. “There are many more unidentified proteins that may be influencing biological clocks, which provides us with lots more to discover.”

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>