Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers identify multi-tasking circadian protein

07.08.2002


Dartmouth Medical School geneticists have found a molecular shortcut from light reception to gene activation in their work to understand biological clocks. Their research has revealed that the protein called White Collar-1 does double duty: it perceives light and then, in response to light, directly turns on a key gene called frequency, which is a central component of the clock.



Biological clocks are molecularly driven and are set, or synchronized, by the daily cycles of light and dark. Using the fungus Neurospora, the Dartmouth team is studying how organisms keep track of time using this internal clock.

"What we have discovered is that a protein called White Collar-1 is both the photoreceptor and the mechanism that turns on the frequency gene, all in one molecule,” explains Allan Froehlich, the lead author. “It’s the combination of the two activities that is so interesting.”


The findings, by Professors Jay Dunlap and Jennifer Loros, graduate student Allan Froehlich, and post-doctoral fellow Yi Liu, now on the faculty at the University of Texas Southwestern Medical Center, was published in the Aug. 2 issue of Science; the study was reported online in the July 4, 2002, issue of Sciencexpress. The Dunlap and Loros laboratories have made numerous contributions to understanding the genetic foundation for biological clocks.

Researchers, working with a variety of organisms, have already begun to understand how photoreceptor proteins perceive light at the molecular level and then pass on this information through a complex series of proteins. However, this finding with the White Collar-1 protein reveals a relatively simple process between a light-perceiving protein and turning on a gene.

“Virtually nothing is known about how pathogenic fungi respond to light or whether our discovery can be exploited for a noninvasive medical therapy,” Dunlap says. “But, if you want to do therapy—antifungal, antibacterial or anything—you start looking for biochemical activities that the host does not have that can be targeted to the pathogen.”

Froehlich, working with Dunlap and Loros, built on their discovery that the gene frequency encodes a central cog of the biological clock and that light resets the clock through frequency. He then determined that the clock proteins White Collar-1 and White Collar-2 bind to the specific parts of frequency that turn on frequency in response to light. And finally, he showed that under appropriate biochemical conditions WC-1 was the actual photoreceptor protein.

“The next step is to continue to understand how the proteins work,” says Froehlich. “There are many more unidentified proteins that may be influencing biological clocks, which provides us with lots more to discover.”

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>