Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attention acts as visual glue

02.08.2002


When you gaze at a bowl of fruit, why don’t some of the bananas look red, some of the apples look purple and some of the grapes look yellow?

This question isn’t as nonsensical as it may sound. When your brain processes the information coming from your eyes, it stores the information about an object’s shape in one place and information about its color in another. So it’s something of a miracle that the shapes and colors of each fruit are combined seamlessly into distinct objects when you look at them.

Exactly how the brain recombines these different types of visual information after it has broken them apart is called the "binding problem" and is currently the subject of considerable controversy in the neuroscience community. But the results of a brain mapping experiment, published online by the Proceedings of the National Academy of Sciences on July 29, provide significant new support for the theory that attention is the glue that cements visual information together as people scan complex visual scenes.



The study was a collaboration among René Marois, assistant professor of psychology at Vanderbilt; John C. Gore, who recently moved from Yale to become a Chancellor’s University Professor at Vanderbilt; and Yale graduate student Keith M. Shafritz.

"There are more than a dozen places in the brain involved with processing visual information, each specializing in information with slightly different attributes," says Marois. "Some specialize in processing color, some specialize in processing shape, while others specialize in movement. These areas are not clustered together, but distributed widely around the back of the brain."

There are two leading theories about how the brain reintegrates this information.

One view proposes that the neurons in the scattered areas are bound together in a way that allows them to act simultaneously. When you look at a banana, the neurons that store information about the banana’s shape fire simultaneously with the neurons in a different region of the brain that store information about the banana’s color. It is the direct functional interaction between neurons located in different visual areas that binds together an object’s numerous visual properties.

In the 1980’s, Anne M. Triesman at Princeton and her colleagues advanced an alternative mechanism. She proposed that visual binding is mediated by the parietal cortex, an area of the brain known to be involved in spatial attention. She suggested that the act of focusing one’s attention on an object’s spatial location provides the key that binds the different types of visual information together. If an apple is sitting on the table in front of a woman, then her brain, specifically the parietal cortex, associates the information about its color and shape with its location and uses the spatial information to bind together the visual information whenever she focuses her attention on the apple.

The description of a patient who, following a brain injury in the parietal lobe, had difficulty associating colors with more than one object at a time gave Marois the idea for the basic experiment. When the person was presented with objects one at a time, he had no problem properly pairing their shapes and colors. When presented with two or more objects at the same time, however, he often mismatched the color of one object with the shape of another.

So Marois designed a series of trials that asked subjects to concentrate on the shape only, the color only or both shape and color of pairs of objects displayed on a computer screen while their brain activity was monitored using the technique called functional MRI. The researchers presented these pairs to the individuals either sequentially in the same location or simultaneously at different locations and recorded the areas in the brain that were most active.

"The purpose of our study was really to test the attention theory as strongly as we could," says Marois. "I was actually surprised that it worked because we had to adopt such stringent testing conditions."

Despite their stringency, the tests showed that activity in the parietal region increased significantly whenever the individuals were presented with more than one object at the same time.

"This provides strong evidence in favor of the theory that spatial attention is the binding glue that the brain uses to integrate visual objects whenever it is presented with more than one object at the same time, which is most of the time," says Marois.

While the study results support the attention theory, they do not rule out other mechanisms. "In fact," he adds, "it is practically certain that the brain uses several mechanisms to solve this fascinating problem."


The project was funded by a grant from the National Institute of Neurological Disorders and Stroke.

For more news about research at Vanderbilt, visit Exploration, Vanderbilt’s online research magazine at http://exploration.vanderbilt.edu.


David F. Salisbury | EurekAlert!
Further information:
http://exploration.vanderbilt.edu
http://www.vanderbilt.edu/

More articles from Life Sciences:

nachricht Catalysts for climate protection
19.08.2019 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht From the tiny testes of flies, new insight into how genes arise
19.08.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>