Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new insight into a common signaling pathway

01.08.2002


Scientists have identified a key regulatory mechanism in the TGF-ß pathway. This discovery by Dr. Kai Lin and colleagues at UMASS Medical School and the University of Mississippi Medical Center helps further our understanding of how this important signaling pathway functions in a variety of cellular processes, including cancer formation and embryonic development.



The work is published in the August 1 issue of Genes & Development.

The TGF-ß pathway is an intracellular signaling pathway that enables a cell to respond to changes in its environment. This signal transduction pathway converts ligand binding at the cell surface into an enzymatic cascade inside the cell, which ultimately induces changes in gene expression. In this fashion, the TGF-ß pathway regulates a number of different cellular responses, including cell proliferation, differentiation and migration, programmed cell death, and development.


The Smad family of proteins is the primary route for propagating the TGF-ß signal. Smads are activated by ligand-bound transmembrane receptors and subsequently travel through the cytoplasm and into the nucleus, where they act as transcription factors to activate the expression of TGF-ß target genes.

Dr. Lin and colleagues have determined that the conformation of the Smad3 protein specifies which members of the TGF-ß pathway it can interact with, and thereby regulates the progression of the TFG-ß signal transduction cascade.

Upon TGF-ß ligand binding to transmembrane receptors at the cell surface, a protein called SARA (Smad Anchor for Receptor Activation) recruits Smad3 to the transmembrane receptor, where Smad3 is converted from an inactive monomeric form into an active trimeric form. Trimeric Smad3 promptly dissociates from SARA and enters the nucleus, where it interacts with cofactors to regulate gene expression. Previous work has shown that nuclear Smad3 interacts with a corepressor called "Ski," which serves to prevent Smad3 activation of target genes.

Using a combination of structural and biochemical approaches, Dr. Lin and colleagues discovered that SARA preferentially binds to monomeric Smad3, while Ski preferentially binds to trimeric Smad3. The researchers thus identified an allosteric mechanism of regulation of the TGF-ß pathway: "The conformational transition functions as a master switch of the pathway, converting Smad-receptor interactions to Smad-nuclear interactions," explains Dr. Lin. The formation of trimeric Smad3 transduces the TGF-ß signal by forcing Smad3 to dissociate from SARA, thereby freeing Smad3 to travel into the nucleus.

In this manner, the conformation-dependent activity of Smad3 can both propagate the TGF-ß signal and establish a negative feedback mechanism (through Ski) to regulate the transcriptional effect of TGF-ß signaling.

So, how does a cell succeed in eliciting TGF-ß target gene expression if trimeric Smad3 is bound in the nucleus by Ski, a corepressor? The authors reason that the trimeric form of Smad3 is probably also recognized by coactivators in the nucleus, which would compete with Ski for Smad3 binding and ultimately establish the appropriate balance between transcriptional activation and repression. Further research will focus on delineating the course of these downstream nuclear events.

However, as it stand now, this work by Dr. Lin and colleagues affords enormous insight into the molecular mechanisms of the TGF-ß signaling pathway, providing possible targets for rational drug design to combat the deleterious effects of aberrant TGF-ß signaling.

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>