Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new insight into a common signaling pathway

01.08.2002


Scientists have identified a key regulatory mechanism in the TGF-ß pathway. This discovery by Dr. Kai Lin and colleagues at UMASS Medical School and the University of Mississippi Medical Center helps further our understanding of how this important signaling pathway functions in a variety of cellular processes, including cancer formation and embryonic development.



The work is published in the August 1 issue of Genes & Development.

The TGF-ß pathway is an intracellular signaling pathway that enables a cell to respond to changes in its environment. This signal transduction pathway converts ligand binding at the cell surface into an enzymatic cascade inside the cell, which ultimately induces changes in gene expression. In this fashion, the TGF-ß pathway regulates a number of different cellular responses, including cell proliferation, differentiation and migration, programmed cell death, and development.


The Smad family of proteins is the primary route for propagating the TGF-ß signal. Smads are activated by ligand-bound transmembrane receptors and subsequently travel through the cytoplasm and into the nucleus, where they act as transcription factors to activate the expression of TGF-ß target genes.

Dr. Lin and colleagues have determined that the conformation of the Smad3 protein specifies which members of the TGF-ß pathway it can interact with, and thereby regulates the progression of the TFG-ß signal transduction cascade.

Upon TGF-ß ligand binding to transmembrane receptors at the cell surface, a protein called SARA (Smad Anchor for Receptor Activation) recruits Smad3 to the transmembrane receptor, where Smad3 is converted from an inactive monomeric form into an active trimeric form. Trimeric Smad3 promptly dissociates from SARA and enters the nucleus, where it interacts with cofactors to regulate gene expression. Previous work has shown that nuclear Smad3 interacts with a corepressor called "Ski," which serves to prevent Smad3 activation of target genes.

Using a combination of structural and biochemical approaches, Dr. Lin and colleagues discovered that SARA preferentially binds to monomeric Smad3, while Ski preferentially binds to trimeric Smad3. The researchers thus identified an allosteric mechanism of regulation of the TGF-ß pathway: "The conformational transition functions as a master switch of the pathway, converting Smad-receptor interactions to Smad-nuclear interactions," explains Dr. Lin. The formation of trimeric Smad3 transduces the TGF-ß signal by forcing Smad3 to dissociate from SARA, thereby freeing Smad3 to travel into the nucleus.

In this manner, the conformation-dependent activity of Smad3 can both propagate the TGF-ß signal and establish a negative feedback mechanism (through Ski) to regulate the transcriptional effect of TGF-ß signaling.

So, how does a cell succeed in eliciting TGF-ß target gene expression if trimeric Smad3 is bound in the nucleus by Ski, a corepressor? The authors reason that the trimeric form of Smad3 is probably also recognized by coactivators in the nucleus, which would compete with Ski for Smad3 binding and ultimately establish the appropriate balance between transcriptional activation and repression. Further research will focus on delineating the course of these downstream nuclear events.

However, as it stand now, this work by Dr. Lin and colleagues affords enormous insight into the molecular mechanisms of the TGF-ß signaling pathway, providing possible targets for rational drug design to combat the deleterious effects of aberrant TGF-ß signaling.

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish
24.02.2020 | National University of Ireland Galway

nachricht Shaping the rings of molecules
24.02.2020 | University of Montreal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>