Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new insight into a common signaling pathway

01.08.2002


Scientists have identified a key regulatory mechanism in the TGF-ß pathway. This discovery by Dr. Kai Lin and colleagues at UMASS Medical School and the University of Mississippi Medical Center helps further our understanding of how this important signaling pathway functions in a variety of cellular processes, including cancer formation and embryonic development.



The work is published in the August 1 issue of Genes & Development.

The TGF-ß pathway is an intracellular signaling pathway that enables a cell to respond to changes in its environment. This signal transduction pathway converts ligand binding at the cell surface into an enzymatic cascade inside the cell, which ultimately induces changes in gene expression. In this fashion, the TGF-ß pathway regulates a number of different cellular responses, including cell proliferation, differentiation and migration, programmed cell death, and development.


The Smad family of proteins is the primary route for propagating the TGF-ß signal. Smads are activated by ligand-bound transmembrane receptors and subsequently travel through the cytoplasm and into the nucleus, where they act as transcription factors to activate the expression of TGF-ß target genes.

Dr. Lin and colleagues have determined that the conformation of the Smad3 protein specifies which members of the TGF-ß pathway it can interact with, and thereby regulates the progression of the TFG-ß signal transduction cascade.

Upon TGF-ß ligand binding to transmembrane receptors at the cell surface, a protein called SARA (Smad Anchor for Receptor Activation) recruits Smad3 to the transmembrane receptor, where Smad3 is converted from an inactive monomeric form into an active trimeric form. Trimeric Smad3 promptly dissociates from SARA and enters the nucleus, where it interacts with cofactors to regulate gene expression. Previous work has shown that nuclear Smad3 interacts with a corepressor called "Ski," which serves to prevent Smad3 activation of target genes.

Using a combination of structural and biochemical approaches, Dr. Lin and colleagues discovered that SARA preferentially binds to monomeric Smad3, while Ski preferentially binds to trimeric Smad3. The researchers thus identified an allosteric mechanism of regulation of the TGF-ß pathway: "The conformational transition functions as a master switch of the pathway, converting Smad-receptor interactions to Smad-nuclear interactions," explains Dr. Lin. The formation of trimeric Smad3 transduces the TGF-ß signal by forcing Smad3 to dissociate from SARA, thereby freeing Smad3 to travel into the nucleus.

In this manner, the conformation-dependent activity of Smad3 can both propagate the TGF-ß signal and establish a negative feedback mechanism (through Ski) to regulate the transcriptional effect of TGF-ß signaling.

So, how does a cell succeed in eliciting TGF-ß target gene expression if trimeric Smad3 is bound in the nucleus by Ski, a corepressor? The authors reason that the trimeric form of Smad3 is probably also recognized by coactivators in the nucleus, which would compete with Ski for Smad3 binding and ultimately establish the appropriate balance between transcriptional activation and repression. Further research will focus on delineating the course of these downstream nuclear events.

However, as it stand now, this work by Dr. Lin and colleagues affords enormous insight into the molecular mechanisms of the TGF-ß signaling pathway, providing possible targets for rational drug design to combat the deleterious effects of aberrant TGF-ß signaling.

Heather Cosel | EurekAlert!

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>