Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generating genetic diversity in the nervous system

01.08.2002


Scientists from Baylor College of Medicine (Texas, USA) and the Wellcome Trust Sanger Institute (Cambridge, UK) have deciphered how neurons can synthesize a diverse range of proteins from a relatively limited number of genes – a discovery with important implications for understanding how complex neural circuitry is formed and maintained throughout our lives.



A long-standing question in neurobiology is how each of the tens of thousands of neurons that populate the mammalian brain are instructed to establish the specific connections that give rise to our complex neural networks. Researchers postulate that the expression of distinct sets of proteins in each individual neuron act as molecular cues to direct the course of each neuron’s fate. The protocadherin (Pcdh) family of proteins are prime candidates for this job, as each individual neuron expresses an overlapping but distinct combination of Pcdh proteins.

In the August 1 issue of Genes & Development, Dr. Allan Bradley and colleagues report on their identification of the mechanism of neuron-specific Pcdh expression. The Pcdh family of proteins is encoded by three gene clusters (Pcdh-a, Pcdh-ß, and Pcdh-g) on human chromosome #5, and mouse chromosome #18. The a and g clusters each contain genes with several variable exons (coding regions of DNA). Each variable exon can be separately joined to a constant region of the gene, thereby creating the genetic blueprint for a Pcdh protein that will have a unique variable region and a common constant region.


Dr. Bradley and colleagues have discovered that that although the Pcdh gene clusters share a similar genomic structure to the immunoglobin genes in the immune system -- where antibody protein diversity confers antigen-binding specificity -- the neuron-specific expression of Pcdh proteins is accomplished by an entirely different mechanism.

As Dr. Bradley explains, "We tested the various models by creating mice with a variety of modified alleles. The most intriguing theory was recombination (like the immunoglobulin genes), but we found no evidence to support this! Rather it appears that diversity is predominately generated using alternative promoters and cis-alternative splicing with a low level of trans-splicing."

The researchers found that each variable exon is under the regulatory control of its own promoter (a DNA sequence where RNA polymerase binds to initiate transcription of the gene into pre-mRNA). Once transcribed, the pre-mRNA transcript then predominantly undergoes an intramolecular reaction, known as "cis-splicing," whereby a variable exon is cut out and joined, or "spliced," to the constant region of that same pre-mRNA transcript. Ultimately, this process enables a neuron to manipulate the Pcdh gene structure to generate a number of mRNAs, each containing different variable regions, which will each be translated into a unique Pcdh protein.

This work establishes that through the use of multiple promoters and cis-splicing, individual neurons are able to express distinct combinations of Pcdh genes, and, in turn, proteins. Further work will delineate how the differential expression of Pcdh proteins may underlie the specificity of neural connectivity.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>