Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild plant or food plant?

31.07.2002


Fruit rinds provide new clues about crop domestication

Distinctly sculptured opaline phytoliths in soil and plant remains tell archaeologists which plants were present thousands of years ago. However, the production and purpose of these tiny glassy structures common in plant tissues is poorly understood. Dolores Piperno at the Smithsonian Tropical Research Institute (STRI) in Panama and colleagues predict that a single genetic locus controls both lignin and phytolith production in squash (Cucurbita spp.), making phytoliths even better evidence of plant domestication events.

Sometime after the last ice age, inhabitants of the western hemisphere began to select and cultivate food plants. Plant remains at archaeological sites may not be well preserved, but features often contain phytoliths, tiny silica dioxide deposits from plant tissues. These destinctive microfossils have been used increasingly over the last decade in studies of plant domestication, because they clearly identify a number of different crop plants and their wild progenitors.



However, little is known about how plants make phytoliths, and why.

A 1997 study showed that a single gene in maize controls phytolith production, lignification and silification, all characteristics modified when modern maize diverged from its wild ancester, teosinte.

On the hunch that the same might be true for squash, Piperno and Irene Holst from STRI with Linda Wessel-Beaver from the Univeristy of Puerto Rica and Thomas Andres of the Cucurbit Society set about to characterize the rinds of 148 fruits from wild and cultivated species of the squash genus, Cucurbita. They also crossed the plants and characterized the rinds of their offspring.

Thin sections of the soft rinds of domesticated species lacked lignification and big, scalloped phytoliths. All of the species with hard rinds (both wild and domesticated) were lignified and contained phytoliths.

One to one correnspondence between lignification and the presence of phytoliths plus identical segregation patterns for lignin and phytoliths in the fruits of first and second generations of hybridized specimens led the authors to present results in the Proceedings of the National Academy of Sciences postulating a single locus called "hard rind" (Hr) coding for this suite of plant defensive characters in Cucurbita.

They demonstrated that the distinctive shapes and surface sculptoring of the phytoliths are determined by the different types of cell configurations in Cucurbita rinds, as the phytoliths are formed in places in the rinds that are taxonomically useful for identification when rind specimens are analyzed by archaeobotanists.

Identification of a single suite of plant defensive characteristics determined by a single genetic locus will help archaeologists to determine whether plants in ancient samples were domesticated or wild varieties.

Dolores Piperno | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>