Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Challenges Notion That Dinosaur Soft Tissues Still Survive

30.07.2008
Paleontologists in 2005 hailed research that apparently showed that soft, pliable tissues had been recovered from dissolved dinosaur bones, a major finding that would substantially widen the known range of preserved biomolecules

But new research challenges that finding and suggests that the supposed recovered dinosaur tissue is in reality biofilm – or slime.

"I believed that preserved soft tissues had been found, but I had to change my opinion," said Thomas Kaye, an associate researcher at the Burke Museum of Natural History and Culture at the University of Washington. "You have to go where the science leads, and the science leads me to believe that this is bacterial biofilm."

The original research, published in Science magazine, claimed the discovery of blood vessels and what appeared to be entire cells inside fossil bone of a Tyrannosaurus rex. The scientists had dissolved the bone in acid, leaving behind the blood vessel- and cell-like structures.

... more about:
»Biofilm »blood »preserved »structures

But in a paper published July 30 in PloS One, a journal of the open-access Public Library of Science, Kaye and his co-authors contend that what was really inside the T. rex bone was slimy biofilm created by bacteria that coated the voids once occupied by blood vessels and cells.

He likens the phenomenon to what would happen if you left a pail of rainwater sitting in your backyard. After a couple of weeks you would be able to feel the slime that had formed on the inner walls of the bucket.

"If you could dissolve the bucket away, you'd find soft, squishy material in the shape of the bucket, and that's the slime," Kaye said. "The same is true for dinosaur bones. If you dissolve away the bone, what's left is biofilm in the shape of vascular canals."

Co-authors of the new paper are Gary Gaugler of Microtechnics Inc. of Granite Bay, Calif., and Zbigniew Sawlowicz of Jagiellonian University in Poland.

Kaye said he began his research with the hope of being the second person to find preserved dinosaur tissues. In addition to the acid bath procedure used in the previous work, he added examination by electron microscope before the bones were dissolved. He was surprised by the findings.

The researchers found that what previously had been identified as remnants of blood cells, because of the presence of iron, were actually structures called framboids, microscopic mineral spheres bearing iron. They found similar spheres in a variety of other fossils from various time periods, including an extinct sea creature called an ammonite. In the ammonite they found the spheres in a place where the iron they contain could not have had any relationship to the presence of blood.

"We determined that these structures were too common to be exceptionally preserved tissue. We realized it couldn't be a one-time exceptional preservation," Kaye said.

The scientists also dissolved bone in acid, as had been done previously, and found the same soft tissue structures. They conducted a comparison using infrared mass spectroscopy and determined the structures were more closely related to modern biofilm than modern collagen, extracellular proteins associated with bone. Carbon dating placed the origin at around 1960.

Using an electron microscope, the researchers saw coatings on the vascular canal walls that contained gas bubbles, which they associated with the presence of methane-producing bacteria. In addition, they examined what looked like tiny cracks within the vascular canals and found that they were actually small troughs, or channels. Study at high magnification revealed the channels had rounded bottoms and bridged each other, indicating they were organically created, likely by bacteria moving in a very thick solution.

"From this evidence, we could determine that what had previously been reported as dinosaurian soft tissues were in fact biofilms, or slime," Kaye said.

For more information, contact Kaye at (307) 334-4018 or tomkaye@u.washington.edu

Vince Stricherz | Newswise Science News
Further information:
http://www.u.washington.edu.
http://www.plosone.org/doi/pone.0002808

Further reports about: Biofilm blood preserved structures

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>