Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Francisella tularensis: stopping a biological weapon

28.07.2008
Scientists hope a vaccine is on the horizon for tularemia, a fatal disease caused by the pathogen Francisella tularensis, an organism of concern as a potential biological warfare agent.

Until recently we knew very little about this bacterium. However, according to the August issue of the Journal of Medical Microbiology, research on the bacterium has been reinvigorated and rapid progress has been made in understanding how it causes disease.

Infection with F. tularensis can result in a variety of symptoms, depending on the route of infection. For example, infection via an insect bite can lead to a swollen ulcer or fever, chills, malaise, headaches and a sore throat. When infection occurs by eating contaminated food, symptoms can range from mild diarrhoea to an acute fatal disease. If inhaled, F. tularensis infections can have a 30% mortality rate if left untreated.

"Only very few bacteria are needed to cause serious disease," said Prof Petra Oyston from Dstl, Porton Down. "Because of this and the fact that tularemia can be contracted by inhalation, Francisella tularensis has been designated a potential biological weapon. Since the events of September 2001 and the subsequent anthrax attacks on the USA, concern about the potential misuse of dangerous pathogens including F. tularensis has increased. As a result, more funding has been made available for research on these organisms and has accelerated progress on developing medical countermeasures."

Tularemia circulates in rodents and animals like rabbits and hares. Outbreaks in humans often happen at the same time as outbreaks in these animals. The disease is probably transmitted by insects like mosquitoes, ticks and deer flies. People can also become infected by contact with contaminated food or water and by breathing in particles containing the bacteria. Farmers, hunters, walkers and forest workers are most at risk of contracting tularemia.

There is currently no vaccine against tularemia. Because there are few natural cases of tularemia, money was not spent on the development of a vaccine. However, various nations developed F. tularensis as a biological weapon, including the reported production of antibiotic-resistant strains, so research into its pathogenesis has become a biodefence issue.

"Progress is being made," said Prof. Oyston. "Since the genome of F. tularensis was sequenced, researchers have taken great strides in understanding the molecular basis for its pathogenesis. This is essential information for developing a vaccine and getting it licensed."

We are still unsure about the function of most F. tularensis genes. "Recently genes needed by F. tularensis for growth and survival have been identified," said Prof. Oyston. "These could be targets for novel antimicrobial development or could be used in the production of a vaccine."

"Although we are getting closer to addressing key issues such as the need for an effective vaccine, it appears we are still some way from understanding the pathogenesis of F. tularensis. More research is needed in this area."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Francisella Infection Pathogen tularemia tularensis weapon

More articles from Life Sciences:

nachricht Crystal growth kinetics and its link to evolution. New findings about biomineralization in molluscan shells
24.09.2019 | Technische Universität Dresden

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Wire laser material deposition – a smart way to save costs

24.09.2019 | Trade Fair News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>