Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standards in stem cell research

18.07.2008
Standards in stem cell research help both scientists and regulators to manage uncertainty and the unknown, according to new research funded by the Economic and Social Research Council. Efforts to standardise practices across different labs is, however, a balancing act where the autonomy of scientists and fragility of living material need to be weighed against the need for comparable data.

The ambition in many quarters to scale up the production of human embryonic stem cells and move towards clinical trials requires that different laboratories are able to produce to a standard quality of cells. Developing common standards in stem cell production is not straightforward as so much is still unknown in this new science. Professor Andrew Webster and Dr Lena Eriksson of York University interviewed and observed a range of scientists and technicians working in stem cell laboratories in the UK, USA and Sweden.

Accurately describing human embryonic stem cell lines is one way to begin setting standards. A stem cell line is a family of constantly-dividing cells, the product of a single parent group of stem cells. Embryonic stem cells are unique in that they have yet to 'decide' which developmental path to choose: they have the ability to turn into almost all human cell types. However each human embryonic stem cell holds the genetic signature of the donor which differs between donors just as people themselves differ. Further the state of a stem cell is by its very nature temporary as it is defined by its ability to develop into many different cell types.

Some scientists argued that as the stem cell cannot be standardised, the process and materials used should be standardised. Currently differences in laboratory practices are thought to result in differences in stem cell lines reflecting the way they are treated rather than an innate quality of the lines themselves. The skills of the laboratory technician also play a key role. But pinpointing all the factors that contribute to producing successful stem cell lines remains elusive. “Scientists often explain that their laboratory produces successful human embryonic stem cell lines because their laboratory uses the factor X when they grow them or its lab technicians have green fingers,” says Dr Lena Eriksson of the research team.

... more about:
»Embryonic »Stem »embryonic stem

Some researchers prefer not to develop standards as these will constrain the science and may close off promising areas of research. “Others argue that it is simply futile,” explains Lena Eriksson. “Can you standardise how all children sleep by giving them the same bed, sheet and blanket? Of course not. So why bother standardising the materials of stem cell production when other differences such as donor history and derivation methods are so complex, manifold and, to date, largely unknown?”

However, the research shows most stem cell scientists are keen to collaborate on the technical side as they feel this is necessary in order to move the field as a whole forward. The research team followed one particularly successful effort – the International Stem Cell Initiative – that adopted a multi-sited experimental approach in which a large number of stem cell lines were analysed and compared.

Because of the imprecise nature of the manual laboratory work, standardisation opens a potential market for automation technologies to be introduced into human embryonic stem cell laboratories. Yet the research shows this also brings tensions. By attracting businesses keen to become suppliers of laboratory material for this emerging market, the expense of such equipment as well as the skills and staff needed to operate it may exclude small laboratories. Even those that can afford to meet the costs have reservations about the robustness of stem cells to withstand the automation process. The relationship between standards, automation and stem cell quality will be key to the future scale-up of the field and so its clinical application.

Danielle Moore | alfa
Further information:
http://www.esrcsocietytoday.ac.uk
http://www.esrcsocietytoday.ac.uk/ESRCInfoCentre/PO/releases/2008/

Further reports about: Embryonic Stem embryonic stem

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>