Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery - marsupials and humans shared same genetic imprinting 150 million years ago

16.07.2008
Research published in Nature Genetics by a team of international scientists including the University of Melbourne, Department of Zoology, has established an identical mechanism of genetic imprinting, a process involved in marsupial and human fetal development, which evolved 150 million years ago.

“This paper shows that we share a common genetic imprinting mechanism which has been active for about 150 million years despite the differences in reproductive strategies between marsupials and humans,” said Professor Geoffrey Shaw of the Department of Zoology at the University of Melbourne, a coauthor on the paper.

Professor Marilyn Renfree who lead the University of Melbourne research team says marsupials give birth to very small young that develop mainly within the pouch while humans have more developed young at birth that undergo a large period of growth in the uterus.

“Our team provided vital samples and genetic resources from marsupials to enable this study and contributed our world-leading expertise on marsupial biology and genomics to the interpretation of the results,” Professor Renfree said.

... more about:
»Genetic »Zoology »marsupial

Genomic imprinting is a mechanism that regulates gene expression in the developing fetus and plays a major role in regulating its growth.

“We all carry two copies of every gene in our DNA, one inherited from our mother and one from our father. So for each gene we have a ‘back-up’. Normally, both copies of the gene are used for development, but in some special cases the gene from either our mother or father is switched off, so we only have one active copy. This phenomenon is known as genomic imprinting,” explained Dr Andrew Pask also from the Department of Zoology.

“Because there is no back up copy, when errors occur in this process, it results in many human genetic diseases mainly affecting growth and brain function.”

Pask explains that a key gene regulating fetal growth is the Insulin-like-growth-factor-2 or IGF2 which is an imprinted gene.

“We inherit a single working copy of this gene from our fathers, while the copy we inherit from our mothers is switched off. The switch for this gene is controlled by another gene known as H19. The H19 gene is unusual gene that makes a microRNA and not a protein.”

“MicroRNA genes have been sought in marsupials for years, and now for the first time one has been discovered,” Dr Pask said.

Pask explains that the microRNA structure is virtually identical to that of mice and humans, but there was no evidence of this gene or a similar microRNA in the more distantly related platypus.

The study was a large team effort involving researchers in the UK, from the Babraham Institute, the Sanger Institute and the University of Cambridge, in Australia, from the University of Melbourne, and the USA, from the University of Texas at San Antonio (all part of the Sequence Analysis of Vertebrate Orthologous Imprinted Regions ‘SAVOIR’ consortium).

“Understanding how genetic imprinting evolved is important,” said Dr Shaw, “It helps us to determine how the mechanism works and what we can do to avoid the development of a number of human diseases.”

For more information please contact:

Dr Andrew Pask
Department of Zoology, University of Melbourne, Australia
Mob: 0438 053 440
Associate Professor Geoff Shaw
Department of Zoology, University of Melbourne, Australia
Mob: 0425 735 837
More information about this article:
Rebecca Scott
Media Promotions Officer
rebeccas@unimelb.edu.au
Tel: +61 3 8344 0181
Mob: 0417 164 791

Rebecca Scott | EurekAlert!
Further information:
http://www.unimelb.edu.au

Further reports about: Genetic Zoology marsupial

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>