Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Protein’s Path to the “Chamber of Doom”

14.07.2008
Researchers have uncovered a perilous pathway within the cell that rivals any road taken by Indiana Jones or his summer blockbuster companions: a slippery tube that funnels proteins into a “chamber of doom” where they are shredded and recycled into the building blocks of new proteins.

The tube is part of the 26S proteasome, an enzyme that acts as the cell’s protein garbage disposal. As described by researchers from the Technion-Israel Institute of Technology and the University of Texas Health Science Center at San Antonio, the tube is a concentric stack of rings wrapped in molecular motors that speed the proteins toward the proteasome’s slicing and dicing core.

“The life of all proteins in our cells ends within the proteasome chamber of doom,” Technion author Michael Glickman explained. He suggested that the newly-described pathway “should be of interest in applications for diseases in which cells are unable to process degraded or misfolded proteins,” including Alzheimer’s and Parkinson’s disease, some cancers, and age-related conditions such as cataract disease.

The study, published online in June in the journal Nature Structural and Molecular Biology, will help researchers understand the basic biology of the proteasome and “its intrinsic essential function in a myriad of cellular pathways,” said Allen Taylor, who has studied proteasome function extensively as director of the Laboratory for Nutrition and Vision Research at Tufts University.

... more about:
»Glickman »Molecular »proteasome »structure

The 26S proteasome degrades proteins that are marked for destruction with a ubiquitin protein “tag.” The proteasome itself consists of two major structures: a large core structure where the proteins are degraded, and a smaller structure that serves as a kind of entryway where the tagged protein makes its first contact with the proteasome and is unfolded for its journey into the core. The tube described by Glickman and colleagues is part of the smaller structure, and serves a chute between the first contact site and the core.

The researchers used atomic force microscopy to visualize the extremely tiny tube, which Glickman described as two molecular “donuts” stacked on top of each other. The donut holes through which proteins pass is only two nanometers in diameter. (For comparison, the period at the end of this sentence is one million times wider than a nanometer.)

The tube is ringed by a group of energy-producing enzymes called ATPases, which act a motor to drive proteins through the tube. “One may see the entire machine as an external engine wrapping around an inner molecular stent for protein translocation, all situated atop the molecular shredder into which the proteins are fed,” Glickman explained.

It’s a natural design that engineers working on synthetic nanomachines might hope to copy in their own creations, he noted.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

Further reports about: Glickman Molecular proteasome structure

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>