Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Protein’s Path to the “Chamber of Doom”

14.07.2008
Researchers have uncovered a perilous pathway within the cell that rivals any road taken by Indiana Jones or his summer blockbuster companions: a slippery tube that funnels proteins into a “chamber of doom” where they are shredded and recycled into the building blocks of new proteins.

The tube is part of the 26S proteasome, an enzyme that acts as the cell’s protein garbage disposal. As described by researchers from the Technion-Israel Institute of Technology and the University of Texas Health Science Center at San Antonio, the tube is a concentric stack of rings wrapped in molecular motors that speed the proteins toward the proteasome’s slicing and dicing core.

“The life of all proteins in our cells ends within the proteasome chamber of doom,” Technion author Michael Glickman explained. He suggested that the newly-described pathway “should be of interest in applications for diseases in which cells are unable to process degraded or misfolded proteins,” including Alzheimer’s and Parkinson’s disease, some cancers, and age-related conditions such as cataract disease.

The study, published online in June in the journal Nature Structural and Molecular Biology, will help researchers understand the basic biology of the proteasome and “its intrinsic essential function in a myriad of cellular pathways,” said Allen Taylor, who has studied proteasome function extensively as director of the Laboratory for Nutrition and Vision Research at Tufts University.

... more about:
»Glickman »Molecular »proteasome »structure

The 26S proteasome degrades proteins that are marked for destruction with a ubiquitin protein “tag.” The proteasome itself consists of two major structures: a large core structure where the proteins are degraded, and a smaller structure that serves as a kind of entryway where the tagged protein makes its first contact with the proteasome and is unfolded for its journey into the core. The tube described by Glickman and colleagues is part of the smaller structure, and serves a chute between the first contact site and the core.

The researchers used atomic force microscopy to visualize the extremely tiny tube, which Glickman described as two molecular “donuts” stacked on top of each other. The donut holes through which proteins pass is only two nanometers in diameter. (For comparison, the period at the end of this sentence is one million times wider than a nanometer.)

The tube is ringed by a group of energy-producing enzymes called ATPases, which act a motor to drive proteins through the tube. “One may see the entire machine as an external engine wrapping around an inner molecular stent for protein translocation, all situated atop the molecular shredder into which the proteins are fed,” Glickman explained.

It’s a natural design that engineers working on synthetic nanomachines might hope to copy in their own creations, he noted.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

Further reports about: Glickman Molecular proteasome structure

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>