Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that control embryonic stem cell fate identified

14.07.2008
Scientists have identified about two dozen genes that control embryonic stem cell fate. The genes may either prod or restrain stem cells from drifting into a kind of limbo, they suspect. The limbo lies between the embryonic stage and fully differentiated, or specialized, cells, such as bone, muscle or fat.

By knowing the genes and proteins that control a cell's progress toward the differentiated form, researchers may be able to accelerate the process – a potential boon for the use of stem cells in therapy or the study of some degenerative diseases, the scientists say.

Their finding comes from the first large-scale search for genes crucial to embryonic stem cells. The research was carried out by a team at the University of California, San Francisco and is reported in a paper in the July 11, 2008 issue of "Cell."

"The genes we identified are necessary for embryonic stem cells to maintain a memory of who they are," says Barbara Panning, PhD, associate professor of biochemistry and biophysics at UCSF, and senior author on the paper. "Without them the cell doesn't know whether it should remain a stem cell or differentiate into a specialized cell."

The scientists used a powerful technique known as RNA interference, or RNAi, to screen more than 1,000 genes for their role in mouse embryonic stem cells. The technique allows researchers to "knock down" individual genes, reducing their abundance in order to determine the gene's normal role.

The research focused on proteins that help package DNA. In the nucleus, DNA normally wraps around protein complexes called nucleosomes, forming a structure known as chromatin. This is what makes up chromosomes.

They found 22 proteins, each of which is essential for embryonic stem cells to maintain their consistent shape, growth properties, and pattern of gene expression.

Most of the genes code for multi-protein complexes that physically rearrange, or "remodel" nucleosomes, changing the likelihood that the underlying genes will be expressed to make proteins.

The main player they identified is a 17-protein complex called Tip60-p400. This complex is necessary for the cellular memory that maintains embryonic stem cell identity, Panning explains. Without it, the embryonic stem cells turned into a different cell type, which had some features of a stem cell but many features of a differentiated cell.

The scientists believe that Tip60-p400 is necessary for embryonic stem cells to correctly read the signals that determine cell type. These findings are not only important for understanding cellular memory in embryonic stem cells, but will also likely be relevant to other cell types, they say.

Inactivation of other genes disrupted embryonic stem cell proliferation. These genes were already known to have only slight influence on viability of mature cells in the body. This suggests that embryonic stem cells are "uniquely sensitive to certain perturbations of chromatin structure," the scientists report.

If other types of stem cells are also found to be sensitive to these chromatin perturbations, this could lead to novel cancer therapies in the future, Panning says.

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Complex Embryonic embryonic stem embryonic stem cells type

More articles from Life Sciences:

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner
18.02.2019 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>