Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population dynamics - Distribution of a species of butterfly predicted using geometric variables

11.07.2008
Biologists have just recently discovered this month the distribution of the butterfly Iolana iolas, one of the endangered species in the Madrid region whose population dynamics are determined by its host plant. The new study, prepared by scientists from the King Juan Carlos University in Madrid, proposes a new path for designing conservation plans for the species using geometric variables.

The research, published in the latest edition of the magazine Oecologia (Ecology), has made it possible to determine the relative importance of the area which the butterfly Iolana iolas inhabits, as well as the connectivity between the different areas of the habitat (at a maximum distance of two kilometres from each other) in a network of 75 patches (population centres) situated in the south of the province of Madrid (Chinchón).

Three researchers from the King Juan Carlos University in Madrid have therefore presented a line of study on the spatial structure and dynamics of the butterfly different to other quality characteristics in the habitat.

The results of the study, prepared between 2003 and 2006, show that in the Iolana iolas and other species of monophagous butterflies (with clearly delimited habitat requirements), it is possible to predict the dynamics of their populations from the geometric variables of patches, “since most of the characteristics of the habitat are related to the patch area”, explained Sonia García Rabasa, the main author of the article, to SINC.

Researchers have concentrated on factors that determine the distribution, extinction and density of Iolana iolas populations in relation to the habitat patches formed by an endemic plant of the Iberian Peninsular, and host to butterflies, the Colutea hispanica (leguminous plant).

“The study may be of major importance for designing conservation plans for the species, and shows the relevance of geometric characteristics compared to other habitat quality properties which are frequently more difficult to achieve in field conditions”, commented the researcher.

To predict the distribution patterns it has also been important to study the synchrony between populations: “The spatial study and population dynamics of butterflies may also affect the incidence and probability of the extinction of the species”, García Rabasa pointed out.

Study of population dynamics

The fragmentation or division of the species’ habitat areas is one of the main causes of the decline of the fauna and flora, as it produces an increase in local extinctions and a reduction in recolonisation rates. Knowing the situation of the Iolana iolas, which depends on plant extension for survival, scientists have shown the effects of the characteristics of the habitat (topographic factors, microclimate, amount of resources) and the standard geometric measurements (area and connectivity) of the patches.

During the four years of the study, “the extinction, density and occupation rate of butterflies in different areas was purely determined by their size, without affecting the remoteness between the areas or the quality measurements of the habitat”, added the researcher.

Consequently, the scientists only recorded nine extinctions in nine different patches and 15 colonisations in 13 patches over four years. According to the study, all the extinctions were linked to patches or areas with a low or poor production of fruit which would “inevitably” lead to a failure in the local recruitment of butterflies.

As a result, the smallest habitat patches had lower butterfly population sizes and higher rates of extinction, irrespective of their quality of habitat. The population sizes were small, with only tens of individuals in the “best” years, and were even smaller in smaller patches, with fewer than ten individuals.

Variation in the amount of resources, in this case the production of fruit from the host plant (Colutea hispanica), from which the larvae feed, and changes in population density during these years have made it possible to detect a high level of synchrony between different habitat fragments. This high level of synchrony is a risk to populations which might experience mass extinction in all areas experiencing adverse conditions, such as the effects of climate change.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Iolana characteristics extinction geometric habitat iolas species variables

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>