Researchers hack final part of the immune system code

The same researchers already broke the first part of the codes last autumn, and have now put together a comprehensive picture of how the immune system checks for dangers both in and outside our cells.

According to the researchers this new information, produced with the aid of artificial neural networks, means that it should be possible to predict all the immune system’s known, and also as yet unknown codes. This should in turn lead to the development of new targeted treatments, for e.g. cancer and infectious diseases.

Professor Søren Buus from the Faculty of Health Sciences at the University of Copenhagen has been at the forefront of this research project.

The body’s natural defences uses these codes in such a way that microorganisms cannot detect and discover its functions. It this unique protection that has so far made it difficult for scientists to decode the entire human immune system and thus develop precise immunological tools and carry out organ transplants.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors