Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University involved in new DFG Collaborative Research Center in the field of immune responses

10.07.2008
T cells play a very important role as part of the immune system. The various types of T cells have different tasks within the immune response.

If this defense system fails, conditions such as allergies and autoimmune diseases can develop. The German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) has now approved a research application submitted by laboratories in Würzburg, Berlin and Mainz, the purpose of which is to investigate how genetic control determines the development and function of the various T cells.

"We want to find out how the individual T cells function and how their genetic regulation can be directly influenced, so that new therapy methods can ultimately be developed," explains Prof. Edgar Schmitt of the Institute of Immunology at the Johannes Gutenberg University in Mainz. The DFG has initiated the new Collaborative Research Center Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" on 1 July 2008 and will be making available about € 12 million over the next four years.

T cells are white blood cells formed in the bone marrow that mature in the thymus. They can recognise invading exogenous organisms and substances and then provide a defensive response in many forms, while at the same time a specialized T cell population actively prevents any auto-aggressive immune reaction against the body's own cells.

... more about:
»Collaborative »DFG »T cells »immune »regulatory

These so-called physiological regulatory T cells have been extensively studied by Edgar Schmitt's team. "We shall be using the Transregio Collaborative Research Center to investigate how a specialized T cell develops and how it functions. In Mainz, we will be taking a closer look at the regulatory T cells, but all subpopulations of T cells will be investigated jointly with the other sites," says Schmitt. The focus is on the exact way in which the genetic information is regulated to enable these cells to systematically to carry out their functions.

If this can be established, it would be possible, for example, to switch off auto-aggressive T cells, and to influence other regulatory cells in such a way that autoimmune diseases could be prevented. "Based on our initial data, we have already been able to outline therapeutic approaches that will have a targeted effect on asthmatic diseases," explains Schmitt.

Investigations conducted by his team have shown that cyclical adenosine monophosphate (cAMP) is essential to the suppressive properties of physiological regulatory T cells. These cells have high concentrations of cAMP, and they transmit it to target cells via channels - the so-called 'gap junctions'. "As a result, these target cells are extensively inhibited and can therefore not act as central drivers of an auto-aggressive or allergic immune response such as asthma."

Schmitt and his colleagues have discovered that the so-called phosphodiesterases (PDEs) antagonize this suppression. These enzymes break down cAMP and therefore counteract inhibition by the regulatory T cells. "We were thus able to achieve a significant alleviation of asthma by systematically inhibiting these PDEs in the mouse model."

The scientists involved hope that the increase and concentration of scientific research in Germany concerning the transcriptional control of the genetic expression of T lymphocytes will contribute towards the discovery of the central trigger points of the immune reaction. The most important factors in the transcriptional control of T cells are to be identified and their function is to be decoded in in vivo mouse models, while methods of achieving targeted modulation of the transcription process are also to be researched. The institutions in Würzburg, Mainz and Berlin, with their varied expertise, will concentrate here on the cellular and molecular biological aspects of T cell biology.

Several institutions and researchers in Mainz are involved in this project: Dr Sabine Ohlemacher and HD Dr Helmut Jonuleit (dermatology), PD Dr Kerstin Steinbrink (dermatology), Prof. Susetta Finotto (1st Medical Clinic), Prof. Ari Waisman (1st Medical Clinic), HD Dr Kurt Reifenberg (Central Laboratory Animal Facility - CLAF), Dr Jürgen Siebler and Prof. Markus Neurath (1st Medical Clinic), as well as Dr Tobias Bopp and Prof. Edgar Schmitt (Institute for Immunology).

The spokesperson for the Transregio 52 Collaborative Research Center is Prof. Edgar Serfling (Pathological Institute, University of Würzburg), with Prof. Richard Kroczek (Robert Koch Institute, Berlin) and Prof. Edgar Schmitt at the University of Mainz as deputy spokespersons.

Prof. Dr. Edgar Schmitt | alfa
Further information:
http://www.uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/de/science/

Further reports about: Collaborative DFG T cells immune regulatory

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>