Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University involved in new DFG Collaborative Research Center in the field of immune responses

10.07.2008
T cells play a very important role as part of the immune system. The various types of T cells have different tasks within the immune response.

If this defense system fails, conditions such as allergies and autoimmune diseases can develop. The German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) has now approved a research application submitted by laboratories in Würzburg, Berlin and Mainz, the purpose of which is to investigate how genetic control determines the development and function of the various T cells.

"We want to find out how the individual T cells function and how their genetic regulation can be directly influenced, so that new therapy methods can ultimately be developed," explains Prof. Edgar Schmitt of the Institute of Immunology at the Johannes Gutenberg University in Mainz. The DFG has initiated the new Collaborative Research Center Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" on 1 July 2008 and will be making available about € 12 million over the next four years.

T cells are white blood cells formed in the bone marrow that mature in the thymus. They can recognise invading exogenous organisms and substances and then provide a defensive response in many forms, while at the same time a specialized T cell population actively prevents any auto-aggressive immune reaction against the body's own cells.

... more about:
»Collaborative »DFG »T cells »immune »regulatory

These so-called physiological regulatory T cells have been extensively studied by Edgar Schmitt's team. "We shall be using the Transregio Collaborative Research Center to investigate how a specialized T cell develops and how it functions. In Mainz, we will be taking a closer look at the regulatory T cells, but all subpopulations of T cells will be investigated jointly with the other sites," says Schmitt. The focus is on the exact way in which the genetic information is regulated to enable these cells to systematically to carry out their functions.

If this can be established, it would be possible, for example, to switch off auto-aggressive T cells, and to influence other regulatory cells in such a way that autoimmune diseases could be prevented. "Based on our initial data, we have already been able to outline therapeutic approaches that will have a targeted effect on asthmatic diseases," explains Schmitt.

Investigations conducted by his team have shown that cyclical adenosine monophosphate (cAMP) is essential to the suppressive properties of physiological regulatory T cells. These cells have high concentrations of cAMP, and they transmit it to target cells via channels - the so-called 'gap junctions'. "As a result, these target cells are extensively inhibited and can therefore not act as central drivers of an auto-aggressive or allergic immune response such as asthma."

Schmitt and his colleagues have discovered that the so-called phosphodiesterases (PDEs) antagonize this suppression. These enzymes break down cAMP and therefore counteract inhibition by the regulatory T cells. "We were thus able to achieve a significant alleviation of asthma by systematically inhibiting these PDEs in the mouse model."

The scientists involved hope that the increase and concentration of scientific research in Germany concerning the transcriptional control of the genetic expression of T lymphocytes will contribute towards the discovery of the central trigger points of the immune reaction. The most important factors in the transcriptional control of T cells are to be identified and their function is to be decoded in in vivo mouse models, while methods of achieving targeted modulation of the transcription process are also to be researched. The institutions in Würzburg, Mainz and Berlin, with their varied expertise, will concentrate here on the cellular and molecular biological aspects of T cell biology.

Several institutions and researchers in Mainz are involved in this project: Dr Sabine Ohlemacher and HD Dr Helmut Jonuleit (dermatology), PD Dr Kerstin Steinbrink (dermatology), Prof. Susetta Finotto (1st Medical Clinic), Prof. Ari Waisman (1st Medical Clinic), HD Dr Kurt Reifenberg (Central Laboratory Animal Facility - CLAF), Dr Jürgen Siebler and Prof. Markus Neurath (1st Medical Clinic), as well as Dr Tobias Bopp and Prof. Edgar Schmitt (Institute for Immunology).

The spokesperson for the Transregio 52 Collaborative Research Center is Prof. Edgar Serfling (Pathological Institute, University of Würzburg), with Prof. Richard Kroczek (Robert Koch Institute, Berlin) and Prof. Edgar Schmitt at the University of Mainz as deputy spokespersons.

Prof. Dr. Edgar Schmitt | alfa
Further information:
http://www.uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/de/science/

Further reports about: Collaborative DFG T cells immune regulatory

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>