Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz University involved in new DFG Collaborative Research Center in the field of immune responses

10.07.2008
T cells play a very important role as part of the immune system. The various types of T cells have different tasks within the immune response.

If this defense system fails, conditions such as allergies and autoimmune diseases can develop. The German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) has now approved a research application submitted by laboratories in Würzburg, Berlin and Mainz, the purpose of which is to investigate how genetic control determines the development and function of the various T cells.

"We want to find out how the individual T cells function and how their genetic regulation can be directly influenced, so that new therapy methods can ultimately be developed," explains Prof. Edgar Schmitt of the Institute of Immunology at the Johannes Gutenberg University in Mainz. The DFG has initiated the new Collaborative Research Center Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" on 1 July 2008 and will be making available about € 12 million over the next four years.

T cells are white blood cells formed in the bone marrow that mature in the thymus. They can recognise invading exogenous organisms and substances and then provide a defensive response in many forms, while at the same time a specialized T cell population actively prevents any auto-aggressive immune reaction against the body's own cells.

... more about:
»Collaborative »DFG »T cells »immune »regulatory

These so-called physiological regulatory T cells have been extensively studied by Edgar Schmitt's team. "We shall be using the Transregio Collaborative Research Center to investigate how a specialized T cell develops and how it functions. In Mainz, we will be taking a closer look at the regulatory T cells, but all subpopulations of T cells will be investigated jointly with the other sites," says Schmitt. The focus is on the exact way in which the genetic information is regulated to enable these cells to systematically to carry out their functions.

If this can be established, it would be possible, for example, to switch off auto-aggressive T cells, and to influence other regulatory cells in such a way that autoimmune diseases could be prevented. "Based on our initial data, we have already been able to outline therapeutic approaches that will have a targeted effect on asthmatic diseases," explains Schmitt.

Investigations conducted by his team have shown that cyclical adenosine monophosphate (cAMP) is essential to the suppressive properties of physiological regulatory T cells. These cells have high concentrations of cAMP, and they transmit it to target cells via channels - the so-called 'gap junctions'. "As a result, these target cells are extensively inhibited and can therefore not act as central drivers of an auto-aggressive or allergic immune response such as asthma."

Schmitt and his colleagues have discovered that the so-called phosphodiesterases (PDEs) antagonize this suppression. These enzymes break down cAMP and therefore counteract inhibition by the regulatory T cells. "We were thus able to achieve a significant alleviation of asthma by systematically inhibiting these PDEs in the mouse model."

The scientists involved hope that the increase and concentration of scientific research in Germany concerning the transcriptional control of the genetic expression of T lymphocytes will contribute towards the discovery of the central trigger points of the immune reaction. The most important factors in the transcriptional control of T cells are to be identified and their function is to be decoded in in vivo mouse models, while methods of achieving targeted modulation of the transcription process are also to be researched. The institutions in Würzburg, Mainz and Berlin, with their varied expertise, will concentrate here on the cellular and molecular biological aspects of T cell biology.

Several institutions and researchers in Mainz are involved in this project: Dr Sabine Ohlemacher and HD Dr Helmut Jonuleit (dermatology), PD Dr Kerstin Steinbrink (dermatology), Prof. Susetta Finotto (1st Medical Clinic), Prof. Ari Waisman (1st Medical Clinic), HD Dr Kurt Reifenberg (Central Laboratory Animal Facility - CLAF), Dr Jürgen Siebler and Prof. Markus Neurath (1st Medical Clinic), as well as Dr Tobias Bopp and Prof. Edgar Schmitt (Institute for Immunology).

The spokesperson for the Transregio 52 Collaborative Research Center is Prof. Edgar Serfling (Pathological Institute, University of Würzburg), with Prof. Richard Kroczek (Robert Koch Institute, Berlin) and Prof. Edgar Schmitt at the University of Mainz as deputy spokespersons.

Prof. Dr. Edgar Schmitt | alfa
Further information:
http://www.uni-mainz.de
http://www.uni-mainz.de/FB/Medizin/immunologie/de/science/

Further reports about: Collaborative DFG T cells immune regulatory

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>