Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sequencing Study Reveals New Insights into Human Transcriptome

09.07.2008
Joint project of the Max-Planck-Institute for Molecular Genetics and Genomatix takes the first step towards a new picture of the mammalian genome annotation.

In a collaborative project scientists from the Max-Planck-Institute for Molecular Genetics in Berlin (MPI MolGen), Germany and Genomatix with a business in Munich, Germany and Ann Arbor, MI, USA, applied next generation sequencing and analysis methods to generate an unprecedented view at the human transcriptome.

Deep sequencing of transcripts from two human cell lines revealed so far unrecognized complexity and variability of the human transcriptome. They found that 34% of the polyadenylated transcriptome mapped to so far non-annotated genomic regions. Obviously a large number of novel gene candidates are active in the cell lines under study.

In addition, a global survey of mRNA splicing events identified 94,241 splice junctions, of which 4,096 are novel, and showed that exon skipping is the most prevalent form of alternative splicing.

... more about:
»Analysis »method »splicing »transcriptome

Details are presented in the Science report of Sultan et al. “A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome”, published online at Science Express (www.scienceexpress.org). Annotation and data visualization is publicly available at http://www.genomatix.de/MPI.html .

Dr. Marie-Laure Yaspo, Group Leader at the MPI MolGen and head scientist of the study states: ” Deep sequencing allows for the first time to explore directly the complexity and dynamics of the human transcriptome with a reasonable effort. This will lead to a new picture of the mammalian genome annotation far beyond the current state of the art. We provide here global features of alternative splicing events in human cell lines. Such a comparison of within-cell and between-cell alternative splicing events, combined with the simultaneous analysis of gene expression has never been presented before. It becomes clear that the so far available methods only delivered a part of the transcriptional landscape of mammalian cells, especially if gene regulation analysis is considered”

Dr. Martin Seifert, Vice President Business Development and Consulting at Genomatix says:

“The main biological impact is the observation of a new dimension in complexity and variability. Based on the method we could find a significant number of new transcriptional units and splice variants. Our analyses clearly show that transcription is a highly dynamic and variable process. We learned a lot by having access to such high quality data and co-developed necessary new analysis strategies with the MPI MolGen. Especially users of our brand new Genomatix Genome Analyzer will benefit from our experiences along the project, since they have access to all developed strategies.”

For more information please contact:

Dr. Martin Seifert, seifert@genomatix.de
Genomatix Software GmbH
Bayerstr. 85a
D-80335 Munich Tel.: +49-89-599 766 0
Germany Fax.: +49-89-599 766 55

Dr. Martin Seifert | Genomatix Software GmbH
Further information:
http://www.scienceexpress.org
http://www.genomatix.de/MPI.html

Further reports about: Analysis method splicing transcriptome

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>