Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Smart bomb' nanoparticle strategy impacts metastasis

09.07.2008
A new treatment strategy using molecular "smart bombs" to target metastasis with anti-cancer drugs leads to good results using significantly lower doses of toxic chemotherapy, with less collateral damage to surrounding tissue, according to a collaborative team of researchers at the University of California, San Diego.

By designing a "nanoparticle" drug delivery system, the UC San Diego team, led by Moores UCSD Cancer Center Director of Translational Research David Cheresh, Ph.D., has identified a way to target chemotherapy to achieve a profound impact on metastasis in pancreatic and kidney cancer in mice.

In a study to be published online the week of July 7 in advance of publication in the Proceedings of the National Academy of Sciences (PNAS), Cheresh, professor and vice chair of pathology, and members of his team report that the nanoparticle carrying a payload of chemotherapy homes in on a protein marker called integrin áíâ3 – found on the surface of certain tumor blood vessels where it is associated with development of new blood vessels and malignant tumor growth.

The team found that the nanoparticle/drug combination didn't have much impact on primary tumors, but stopped pancreatic and kidney cancers from metastasizing throughout the bodies of mice. They showed that a greatly reduced dosage of chemotherapy can achieve the desired effect because the drug selectively targets the specific blood vessels that feed the cancerous lesion and kills the lesion without destroying surrounding tissue. The destruction of healthy tissue is a side-effect when chemotherapy is administered systemically, flooding the body with cancer-killing toxins.

"We were able to establish the desired anti-cancer effect while delivering the drug at levels 15 times below what is needed when the drug is used systemically," said Cheresh. "Even more interesting is that the metastatic lesions were more sensitive to this therapy than the primary tumor."

The study is an example of an initiative that joins researchers from UC San Diego's Health Sciences and the Jacobs School of Engineering to improve health care through innovative technologies. Engineers and oncologists working together designed a nanoparticle – a microscopic-sized particle of 100 nanometers, made of various lipid-based polymers – which delivers the cancer cell-killing drug doxorubicin to the network of blood vessels supporting the tumor that express the áíâ3 protein.

"Doxorubicin is known to be an effective anti-cancer drug, but has been difficult to give patients an adequate dose without negative side effects," Cheresh said. "This new strategy represents the first time we've seen such an impact on metastatic growth, and it was accomplished without the collateral damage of weight loss or other outward signs of toxicity in the patient."

Cancer metastasis is traditionally much more difficult to treat than the primary tumor, and is what usually leads to the patient's death. Because metastasis is more reliant on new blood vessel growth, or angiogenesis, than established tumors are, Cheresh theorized that targeting the anti-cancer drug to the sites of new blood vessel growth has a preferential effect on metastatic lesions.

"Traditional cancer therapies are often limited, or non-effective over time because the toxic side effects limit the dose we can safely deliver to the patient," said Cheresh. "This new drug delivery system offers an important advance in treating metastatic disease."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Cheresh anti-cancer chemotherapy effect lesion metastasis metastatic nanoparticle

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>