Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new targets for RNAs that regulate genes

08.07.2008
Tiny strands of genetic material called RNA — a chemical cousin of DNA — are emerging as major players in gene regulation, the process inside cells that drives all biology and that scientists seek to control in order to fight disease.

The idea that RNA (ribonucleic acid) is involved in activating and inhibiting genes is relatively new, and it has been unclear how RNA strands might regulate the process.

In a new study available online today and in a future issue of Nature Structural and Molecular Biology, RNA experts at UT Southwestern Medical Center found that, contrary to established theories, RNA can interact with a non-gene region of DNA called a promoter region, a sequence of DNA occurring spatially in front of an actual gene. This promoter must be activated before a gene can be turned on.

“Our findings about the underlying mechanisms of RNA-activated gene expression reveal a new and unexpected target for potential drug development,” said Dr. David Corey, professor of pharmacology and biochemistry at UT Southwestern and one of the senior authors of the study.

Genes are segments of DNA housed in the nucleus of every cell, and they carry instructions for making proteins. Faulty or mutated genes lead to malfunctioning, missing or overabundant proteins, and any of those conditions can result in disease. Scientists seek to understand the mechanisms by which genes are activated, or expressed, and turned off in order to get a clearer picture of basic cell biology and also to develop medical therapies that affect gene expression.

... more about:
»DNA »Disease »Promoter »RNA »Strand »proteins

In previous studies, Dr. Corey and Dr. Bethany Janowski, assistant professor of pharmacology at UT Southwestern and a senior author of the current study, have shown that tiny strands of RNA can be used to activate certain genes in cultured cancer cells. Using strands of RNA that they manufactured in the lab, the researchers showed that the strands regulate gene expression by somehow perturbing a delicate mixture of proteins that surround DNA and control whether or not genes are activated.

Until now, however, it was not clear exactly how the synthetic RNA strands affected that mix of regulating proteins.

In the current study, also carried out in cancer cell cultures, the UT Southwestern research team discovered an unexpected target for the manufactured RNA. The RNA did not home in on the gene itself, but rather on another type of RNA produced by the cell, a so-called noncoding RNA transcript. This type of RNA is found in association with the promoter regions that occur in front of the gene. Promoter regions, when activated, act essentially as a “start” command for turning on genes.

The researchers found that their man-made RNA strand bound to the RNA transcript, which then recruited certain proteins to form an RNA-protein complex. The whole complex then bound to the promoter region, an action that could then either activate or inhibit gene expression.

“Involvement of RNA at a gene promoter is a new concept, potentially a big new concept,” Dr. Janowski said. “Interactions at gene promoters are critical for understanding disease, and our results bring a new dimension to understanding how genes can be regulated.”

Until recently, many scientists believed that proteins alone control gene expression at promoters, but Drs. Corey and Janowski’s results suggest that this assumption is not necessarily true.

“By demonstrating how small RNAs can be used to recruit proteins to gene promoters, we have provided further evidence that this phenomenon should be in the mainstream of science,” Dr. Corey said.

Although using synthetic RNA to regulate gene expression and possibly treat disease in humans is still in the future, Dr. Corey noted that the type of man-made RNA molecules employed by the UT Southwestern team are already being used in human clinical trials, so progress toward the development of gene-regulating drugs could move quickly.

Other researchers from UT Southwestern involved in the research were lead author and student research assistant Jacob Schwartz; student research assistant Scott Younger; and research associate Ngoc-Bich Nguyen. Researchers from the University of Western Ontario and ISIS Pharmaceuticals also participated.

The research was supported by the National Institutes of Health and the Welch Foundation.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

Further reports about: DNA Disease Promoter RNA Strand proteins

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>