Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential treatment for TB solves puzzle

08.07.2008
Scientists have uncovered a new target for the potential treatment of TB, finally resolving a long-running debate about how the bacterial cell wall is built. The research, published in the July issue of Microbiology reveals several molecules that could be developed into drugs to treat tuberculosis.

Multi drug-resistant strains of Mycobacterium tuberculosis, the bacterium that causes TB, sparked concern but the recent emergence of extensively drug-resistant strains (XDR-TB) means the search for new treatments is imperative.

Unlike human cells, bacteria have cell walls. Molecules called mycolic acids form a vital part of these walls. To produce them, bacteria carry out several processes but until recently, scientists were unsure of the genes that control each step. One vital step is dehydration - the removal of a water molecule to lengthen the acid chain. Researchers from the University of Birmingham have shown that the gene Rv0636 controls this step, which provides new avenues for the development of treatments for TB.

"FAS-II is a group of enzymes that work together to carry out dehydration," said Professor Gurdyal Besra from the University of Birmingham. "We know that the molecules NAS-21 and NAS-91 can stop these enzymes from building cell walls, so we looked at their effect on Mycobacteria. We also wanted to find out if one of the enzymes is coded for by the gene Rv0636."

... more about:
»Besra »Molecule »Rv0636 »Tuberculosis »enzyme

Professor Besra and his colleagues made modifications to NAS-21 and NAS-91, making several analogues based on the original molecules. They then tested these analogues to see if they stopped the enzymes from working. "Both series of compounds demonstrated activity against the FAS-II enzymes alone," said Professor Besra. "When we tested them against live bacterial cells we noticed that some of the analogues stopped the cells from building mycolic acids, which effectively killed them.

"We also tested them on bacteria that were overexpressing Rv0636, which meant they were producing extra enzymes. These cells were resistant to NAS-21 and NAS-91, suggesting that the gene Rv0636 does code for an enzyme in the FAS-II complex," said Professor Besra. "So we have solved the mystery.

The researchers have also identified a new class of compounds that could be developed into successful treatments for tuberculosis that are urgently required in the future. "The emergence of drug-resistant strains of Mycobacterium tuberculosis has highlighted the need for new TB drugs. We hope our discovery will lead to a new rationale for the design of treatments," said Professor Besra.

Lucy Goodchild | EurekAlert!
Further information:
http://www.sgm.ac.uk

Further reports about: Besra Molecule Rv0636 Tuberculosis enzyme

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>