Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for salt tolerant grasses aims to improve roadside plantings

07.07.2008
Standing in a greenhouse at the University of Rhode Island, Rebecca Brown was smiling even though it appeared that something had gone terribly wrong. Almost all of the 16 species of grass she planted last February in hundreds of small pots were dead.

The associate professor of turf science wasn't surprised. That's because the pots had been sitting in increasingly saltier water for five months, and few varieties of grass can put up with that environment.

Her aim, with funding from the Rhode Island Department of Transportation, was to identify a salt tolerance limit for native and ornamental turf grasses in hopes of finding a variety that can be used along highways without being killed when roadway salt – mixed with melting snow – is splashed onto the grass.

"The grasses we use in our lawns and along the roads in Rhode Island aren't adapted to salt, and they don't adapt over time because we don't allow them to go to seed," Brown said. "And salt tolerant western grasses may not grow well here because our salinity is only seasonal -- in the winter the grass has to survive the road salt, but during the rest of the year salt isn't a factor because our soil doesn't hold the salt."

... more about:
»Brown »fescue

So she used an ebb and flow hydroponics system to pump salt water into trays of grass to ensure consistent salt levels, starting with 2,500 parts per million of salt in February and increasing it by 2,500 parts per million every other week. In June, when the trials ended and most of the grass was dead, the salt concentration in the water was 22,000 parts per million, which is two-thirds the level of seawater.

Brown was pleased with the results. She pointed out a few tiny blades of green grass amidst the carnage, most from a variety of alkali grass that is known to be somewhat salt tolerant, as well as a couple samples of tufted hair grass and one red fescue.

"That one must have good genes," she said, "since none of the other fescues survived."

Her next step is to take the hardiest samples, plant them in the URI turf fields, collect their seeds, and through a process of selection develop a new variety of salt tolerant grass. Then she will test it again and evaluate how well it responds to mowing.

Brown said that the "salt zone" for Rhode Island highways is from 5 to 20 feet from the edge of the pavement, which is based on the distance that cars splash winter slush. It's for use in that zone that the Department of Transportation is seeking a better grass.

The department typically plants a mix of red fescue, perennial rye grass and Kentucky bluegrass along highways, but Brown said that rye and bluegrass grow poorly in roadside soils that are typically low in fertility. She also noted that most fescues are intolerant of salt.

While the research project is driven in part because the U.S Department of Transportation mandates the use of native grasses along roadways, Brown believes that the best alternative for Rhode Island will probably be an improved variety of red fescue – a plant which may have been introduced during colonial times – that she hopes to develop.

"It seems to do better than our native grasses," Brown said. "We should just use it because it works."

Or, more appropriately, because it lives.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

Further reports about: Brown fescue

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>