Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FSU researcher using computers to hone cancer-fighting strategies

07.07.2008
A Florida State University faculty member who uses computational techniques to evaluate a new class of cancer-killing drugs is attracting worldwide attention from other researchers.
Kevin C. Chen, an assistant professor of chemical and biomedical engineering at the Florida A&M University-Florida State University College of Engineering, is using high-powered computers to determine how substances known as recombinant immunotoxins can best be modified in order to attack and kill malignant tumors while doing minimal harm to a patient's healthy cells.

"Cancer is a disease of tremendous complexity, so the analysis and interpretation of data demands sophisticated, specialized computational methods," Chen said of his research.

Recombinant immunotoxins, Chen explained, are new drugs that are being tested in clinical trials for certain types of cancer therapy. They consist of tiny fragments of antibody proteins that are fused at the genetic level to toxins produced by certain types of bacteria, fungi or plants.

"Once injected into the body, the antibody portion of the immunotoxin targets specific proteins, called antigens, that are massively expressed on the surface of cancer cells," Chen said. "These cells are subsequently killed by the accompanying toxins. Normal, healthy cells, meanwhile, are not recognized and thus are spared."

... more about:
»Drug »immunotoxin
That is the theory, at least. In practice, Chen acknowledges that numerous factors can decrease the immunotoxins' effectiveness. Among them:

*The large size of some immunotoxin molecules can hinder their ability to move to the targeted location to bind readily with cancer cell proteins, leading to efforts to reduce their size.

*The immunotoxin molecules' stability in the bloodstream and in the extracellular matrix can affect their length of time in circulation and in tumor tissues, respectively, thereby determining their effectiveness at killing the optimal number of cancer cells.

*The rate at which immunotoxins bind with malignant cells and the relative amount of antigens expressed on the cell surface are especially critical factors, because an imbalance in those two factors may result in over-bombardment of a single cancer cell with excessive numbers of immunotoxins, leaving many other cancer cells unharmed. The opposite scenario also is possible: If not enough immunotoxins bind with malignant cells, too few cells will be killed with each dose.

"Because the level of anticancer drug doses that can be given to any patient is limited by immunogenicity -- the immune response that results -- it is essential to explore how the efficacy of recombinant immunotoxins can be enhanced without resorting to escalating doses," Chen said. "Our computational research has enabled us to quantify and develop models describing many of the factors that influence immunotoxins' behavior in the body. This is essential knowledge that cancer researchers and doctors must have in order to take the next steps forward in developing immunotoxin drugs that might one day be approved as a standard treatment for cancer patients."

Kevin C. Chen | EurekAlert!
Further information:
http://www.fsu.edu

Further reports about: Drug immunotoxin

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>