Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dividing Cells Find Their Middle by Following Protein Contour Map

02.07.2008
Scientists at Rockefeller University have shown that a protein-chemistry-based contour map, which helps individual proteins locate the center of their cell without direction from a "master organizer," is key to ensuring accurate division during mitosis.

Self-organization keeps schools of fish, flocks of birds and colonies of termites in sync. It's also, according to new research, the way cells regulate the final stage of cell division. Scientists at Rockefeller University have shown that a protein-chemistry-based contour map, which helps individual proteins locate the center of their cell without direction from a "master organizer," is key to ensuring accurate division during mitosis. The finding is reported in the June 19 issue of Nature.

In self-organizing systems, each individual, whether bird, fish, termite or protein, constantly receives and evaluates visual and chemical signals in order to maintain position or determine action, and properties and patterns of the larger whole system emerge from a multiplicity of simple local interactions. Scientists have hypothesized that similar systems exist in cells to carry out numerous functions. The Rockefeller team, led by Professor Tarun Kapoor, head of the Laboratory of Chemistry and Cell Biology, focused on a self-organizing system in mitosis.

As a cell divides, chromosomes in the nucleus duplicate, separate and move to the outer edge of the cell while the cell membrane pinches inward in the middle to form a structure called the cleavage furrow. In order to do this, the cell must know where its middle is.

... more about:
»Division »Kapoor »Kinase »mitosis »phosphorylation

Kapoor, working with colleagues in his laboratory and at the University of Virginia School of Medicine, tracked the activity of a key regulator of mitosis, a protein called Aurora B. Aurora is a kinase, an enzyme that attaches phosphate chemical groups to proteins in a process called phosphorylation. Other enzymes, called phosphatases, reverse this process by removing phosphates.

To follow Aurora activity, the researchers, in collaboration with Alison North of Rockefeller's Bio-Imaging Resource Center, adapted a powerful microscopy technique called FRET imaging, which measures how close two fluorescent molecules are to each other. Chemical modification of proteins cannot easily be visualized with microscopes, so Kapoor and his colleagues engineered a biosensor to measure the balance between phosphorylation by Aurora and dephosphorylation by phosphatases.

The biosensor was anchored to different sites in the cell -- the equivalent of positioning a microphone at different locations in a room -- then analyzed how the information changes over time. The findings: proteins in the middle of the cell had a higher probability of being phosphorylated by Aurora kinase than those located near the edges.

"Aurora kinase essentially generates a protein chemistry-based contour map, which tells individual molecular players where the middle is," says Kapoor. "And the middle is where there would be the highest probability of being modified by Aurora kinase. It's roughly equivalent, Kapoor says, to a self-organizing school of fish, in which fish in the middle feel something different from the fish on the edges.

"What's really exciting is the discovery of a phosphorylation gradient by tracking in living cells the chemical modifications of proteins," says Kapoor. "We can't actually see aurora kinase activity itself, but we can look at the balance of the phosphorylation of a reporter substrate that depends on this kinase."

"This remarkable study shows how an enzyme, aurora B, governs a key step in cell division: positioning of the cleavage furrow," said Richard Rodewald, who oversees cell division grants at the National Institute of General Medical Sciences, which partially supported the research. "This study also underscores the value of the new generation of fluorescent probes for visualizing in exquisite detail the inner workings of living cells."

Joseph Bonner | newswise
Further information:
http://www.rockefeller.edu

Further reports about: Division Kapoor Kinase mitosis phosphorylation

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>