Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link Early Stem Cell Mutation to Autism

02.07.2008
Scientists at the Burnham Institute for Medical Research have shown that neural stem cell development may be linked to Autism. The study demonstrated that mice lacking the myocyte enhancer factor 2C protein in neural stem cells had smaller brains, fewer nerve cells and showed behaviors similar to those seen in humans with a form of autism known as Rett Syndrome.

In a breakthrough scientific study published today in the Proceedings of the National Academy of Sciences, scientists at the Burnham Institute for Medical Research have shown that neural stem cell development may be linked to Autism.

The study demonstrated that mice lacking the myocyte enhancer factor 2C (MEF2C) protein in neural stem cells had smaller brains, fewer nerve cells and showed behaviors similar to those seen in humans with a form of autism known as Rett Syndrome.

This work represents the first direct link between a developmental disorder of neural stem cells and the subsequent onset of autism.

... more about:
»Autism »MEF2C »Stem »Syndrome »neural

The research team was led by Stuart A. Lipton, M.D., Ph.D., a clinical neurologist and Professor and Director of the Del E. Webb Neuroscience, Aging and Stem Cell Research Center at Burnham.

“These results give us a good hint of how to look at Rett Syndrome and potentially other forms of autism in humans,” said Dr. Lipton. “Having identified a mutation that causes this defect, we can track what happens. Perhaps we can correct it in a mouse, and if so, eventually correct it in humans.”

Discovered in Dr. Lipton’s laboratory, MEF2C turns on specific genes which drive stem cells to become nerve cells. When MEF2C was deleted from neural stem cells in mice, there was a faulty distribution of neurons accompanied by severe developmental problems. Adult mice lacking MEF2C in their brains displayed abnormal anxiety-like behaviors, decreased cognitive function and marked paw clasping, a behavior which may be analogous to hand wringing, a notable feature in humans with Rett syndrome.

“There’s a yin and yang to this MEF2C protein,” said Dr. Lipton. “My laboratory recently showed that MEF2C induces embryonic stem cells to become neurons. In this new research, we show that knocking out MEFC2 in the brain results in mice with smaller brains, fewer neurons and reduced neuronal activity. The commonality is the protein’s association in making new neurons.”

Collaborators were Drs. Hao Li, Shu-ichi Okamoto, Nobuki Nakanishi and Scott McKercher, of Burnham, as well as Dr. Amanda Roberts from The Scripps Research Institute and Dr. John Schwarz from the Albany Medical Center.

Rett syndrome, a form of autism, afflicts more girls than boys and results in poor brain development, repetitive hand motions, altered anxiety behaviors and the inability to speak. Patients with Rett Syndrome also suffer from seizures and other debilitating neurological symptoms.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham is one of the fastest growing research institutes in the country with operations in California and Florida. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Heidi Chokeir | newswise
Further information:
http://www.burnham.org

Further reports about: Autism MEF2C Stem Syndrome neural

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>