Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evolutionary origin of mammalian gene regulation unravelled 150 million years by Anglo-Australian-American consortium

Scientists at the Babraham Institute, the Sanger Institute, the University of Cambridge and the University of Melbourne and the University of Texas at San Antonio (all part of the SAVOIR consortium) have found that a complex, highly conserved and extremely important mechanism of controlling genes is over 150 million years old.

The findings, reported today online in Nature Genetics, have provided new insights into the evolution of genomic or parental imprinting and epigenetic regulation in mammals. A failure of these sophisticated processes is associated with many human genetic diseases, psychiatric and autoimmune disorders and ageing.

Epigenetic mechanisms are at the heart of developmental biology, orchestrating the formation of many different tissues and organs from a fertilised egg. Almost all cells in an individual have exactly the same genetic material, yet behave very differently depending on which organs they comprise. Epigenetic regulation enables the fine-tuning of our genes and their expression in different places at different times, leading to the amazing complexity we see in humans despite the relatively small number of unique genes.

We all get two copies of every gene, one from our mother and one from our father. In many cases both copies are used or ‘expressed’, however it is becoming clear that for some genes either the mother’s or the father’s version is used preferentially, a phenomenon known as genomic imprinting. Specific chemical modifications to the DNA, such as methylation, appear to give the chromosomes a ‘memory’ as to their parental origin. These ‘epigenetic’ imprints, from the Greek meaning ‘on top of’, modify the structure of the DNA but not its sequence. In addition to parental modifications, it is thought that epigenetic changes may also arise in response to environmental factors, enabling an organism's genes to adapt and respond differently, even though the gene sequence does not change.

The control of gene expression by imprinting mechanisms has been observed in plants and therians - placental mammals (eutherians) and marsupials (metatherians) - where the majority of imprinted genes are associated with controlling embryonic growth and development, including the development of the placenta. Other imprinted genes are involved in post-natal development, processes like suckling and metabolism.

Imprinting is thought to have evolved because of genetic conflict that influences the allocation of resources from parents to offspring. The origin of this seems to stem from there being different developmental priorities for each parent - the father desires one large, strong offspring from each possible mother whereas the mother prefers to distribute resources equally among all her young (or potential young).

The insulin-like growth factor signalling pathway, which has a major influence on fetal size, is exemplary of this parental-offspring conflict. It contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the father's version of the gene) and Igf2r (a growth inhibitory factor expressed from the maternal copy). In eutherians, these two genes lie on separate chromosomes and are imprinted by different epigenetic mechanisms. In marsupials, IGF2 and IGF2R are known to be imprinted but the IGF2R imprinting mechanism is different than in eutherians (much simpler) and the IGF2 imprinting mechanism is unknown.

To unravel the origins of genomic imprinting and mechanisms underpinning parental specific gene expression, the SAVOIR consortium has planned to obtain and analyse the sequence of all major clusters of imprinted genes from mammals where imprinting has been observed including human, mouse and wallaby, with those apparently lacking imprinting mechanisms, such as platypus and chicken.

Mammals are divided into three groups; Monotremata, Marsupialia and Eutheria, the latter two forming the therian class. Recent evidence suggests that therians diverged from the egg-laying monotremes like the platypus approximately 180 million years ago, and then split into the eutherian and marsupials infra-classes around 150 million years ago. The apparent absence of genomic imprinting in monotremes and presence in eutherians and marsupials suggests that imprinting has evolved at the boundary of monotremes and therians’ divergence. Interestingly, imprinting evolution paralleled the apparition of the placenta and implantation. Indeed, eutherian have a developed placenta that transfers a lot of nutrients to the fetus over a long gestation period while marsupials have a rudimentary placenta and give birth to very immature youngs that spend a long time in a pouch where they suckle milk. Both eutherian and marsupials having a placenta implies that the therian ancestor was a placental mammal. In contrast the monotremes’ gestation shows only gas exchange through the shell before the egg being laid. Hence, it is possible that imprinting and placentation co-evolved in the therian ancestor.

The paradigm of genomic imprinting, the IGF2-H19 imprinted gene cluster, has been studied extensively in eutherians. The IGF2 gene codes for a fetal growth enhancer protein. The H19 gene codes for a RNA whose role is still elusive. The eutherian IGF2 and H19 genes are reciprocally imprinted: IGF2 is exclusively expressed from the father's chromosome and H19 exclusively from the mother's. A paternally methylated element located just upstream of the H19 gene controls this reciprocal imprinting. The present study shows that the H19 non-coding RNA gene exists nearby the marsupial IGF2 gene, that their imprinting is recipocal and that the same paternally-methylated element controls this imprinting. Hence, the therian IGF2-H19 imprinted locus is unique by being a ‘cluster’ of imprinted genes also in marsupials (the few other genes found imprinted in marsupials are all singleton genes) and by having the same imprinting mechanism in both marsupials and eutherians, making it the most ancient imprinted locus in mammals.

The next stage is to look for the IGF2-H19 locus in another branch of mammals’ evolution – the monotremes (egg laying mammals which lactate) – where so far genomic imprinting has not been seen. The recent platypus genome project didn’t succeed in obtaining the sequence of the monotreme IGF2-H19 locus demonstrating the importance of both large scale and more focused genomics projects like ours. Hence the SAVOIR consortium will concentrate its efforts in obtaining the sequence of the monotreme IGF2 locus to provide further insights into the imprinting evolution and the mysteries of gene regulation in these curious creatures which carry mammalian, bird-like and reptilian characteristics.

Finally, the conservation for 150 million years of the H19 non-coding RNA and of different features it harbours (as for example a microRNA hairpin) raises important questions about the function of this gene. MicroRNAs, also known as short interfering RNAs, are short (22-25 base) sequences that are copied from DNA (but do not code for protein) and control gene activity by binding to specific related sequences. This interferes with a gene’s ability to produce the proteins (translation) that co-ordinate cellular activities or can lead to destruction of other RNA molecules. Previous work has indicated that H19 may have a role either in tumour suppression or in oncogenesis, and our findings should give fresh impetus to discover what this intriguing RNA really regulates in normal development and in disease, and why it is so highly conserved.

Claire Cockcroft | alfa
Further information:

Further reports about: CONSORTIUM Chromosome H19 IGF2 IGF2-H19 Placenta RNA eutherian genomic marsupial monotreme therian

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Science & Research
Overview of more VideoLinks >>>