Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how an injured embryo can regenerate itself

30.06.2008
Keep its organs in relative proportion

More than 80 years have passed since the German scientist Hans Spemann conducted his famous experiment that laid the foundations for the field of embryonic development. After dividing a salamander embryo in half, Spemann noticed that one half – specifically, the half that gives rise to the salamander's 'belly' (ventral) starts to wither away.

However, the other 'back' (dorsal) half that develops into its head, brain and spinal cord, continues to grow, regenerating the missing belly half and develops into a complete, though be it smaller, fully functional embryo.

Spemann then conducted another experiment, where this time, he removed a few cells from the back half of one embryo and transplanted them into the belly half of a different embryo. To his surprise, this gave rise to a Siamese twin embryo where an extra head was generated from the transplanted cells. Moreover, although the resulting embryo was smaller than normal, all its tissues and organs developed in the right proportions irrespective of its size, and functioned properly. For this work, Spemann received the Nobel Prize in Physiology or Medicine in 1935.

... more about:
»Embryo »Morphogen »Organ »Tissue

But how does this happen? How exactly is the half embryo able to maintain its tissues and organs in the correct proportions despite being smaller than a normal sized embryo?

Despite many years of research, this question has remained unanswered – until now. More than 80 years since Spemann's classic experiment, Profs. Naama Barkai, Benny Shilo and research student Danny Ben-Zvi of the Weizmann Institute of Science's Molecular Genetics Department, together with Prof. Abraham Fainsod of the Hebrew University-Hadassah School of Medicine, Jerusalem, have finally discovered the mechanisms involved.

Previous studies have shown that the growth and development of cells and organs within the embryo is somehow linked to a special group of substances called morphogens. These morphogens are produced in one particular area within the embryo and then spread throughout the entire embryo in varying concentrations. Scientists then began to realize that the fate of embryo cells, that is to say, the type of tissue and organ they are eventually going to develop into, is determined by the concentration of morphogen that they come into contact with. But this information does not answer the specific question as to how proportion is maintained between organs?

The idea for the present research came about when Weizmann Institute scientist Prof. Naama Barkai and her colleagues developed a mathematical model to describe interactions that occur within genetic networks of an embryo.

The data ascertained from this model suggest that the way morphogens spread throughout the embryo in different concentrations is different than previously thought. The team predicts that an inhibitor molecule, which is secreted from a localized source at one side of the embryo and can bind the morphogen, acts as a type of ferry that 'shuttles' the morphogen to the other side. Therefore, the mathematical model suggests that it is the interactions between the two substances that enable the embryo to keep the relative proportion between organs constant, irrespective of its size. Indeed, these predictions have been validated by experiments conducted on frog embryos by the research team.

The importance of the role of these morphogenic substances, as well as their mechanism of action, is evident by the fact that they have been conserved throughout evolution, where different variants can be found to exist in species ranging from worms to fruit flies and up to higher species including humans. Therefore, understanding the processes that govern embryonic cell development could have many implications. For example, it may lead, in the future, to scientists being able to repair injured tissues.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il
http://wis-wander.weizmann.ac.il

Further reports about: Embryo Morphogen Organ Tissue

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>