Ronin an alternate control for embryonic stem cells

Three proteins – Oct4, Sox2 and Nanog — had previously been considered the “master” regulators of embryonic stem cells, but “Ronin could be as important as these three,” said Dr. Thomas Zwaka, assistant professor in the Stem Cells and Regenerative Medicine (STaR) Center at BCM. In fact, he said, if the action of Oct4, considered the most important, is reduced in embryonic stem cells, Ronin can compensate for the loss.

Embryonic stem cells are pluripotent, meaning they have the potential for becoming all other kinds of cells in the body. They are also capable of self-renewal. Oct4, Sox2 and Nanog were previously thought the major method by which embryonic stem cells remained in their pristine state. Now, Ronin represents a different and parallel pathway to achieve the same result.

Ronin is also expressed in early embryonic development of mice. If it is not present, the embryos die, said Zwaka. It is also found in mature oocytes or egg cells.

“Ronin is a potent transcription repressor,” he said. In fact, it prevents the action of genes that promote the differentiation of cells into the various tissues and organs of the body.

“It does it more effectively than the other three factors together,” he said. It silences the differentiation genes epigenetically through specific chemical mechanisms that modify histones, the chief packaging proteins for DNA.

He and his colleagues found Ronin as a follow-up to an earlier study that showed a component of the cell death system called caspase-3 actually cleaved and reduced the amount of Nanog protein. This caused the embryonic stem cells to stop self-renewal and begin differentiation into other kinds of cells.

Zwaka and his colleagues searched for other proteins affected by the caspase and found Ronin, which was previously unknown.

The finding prompts other questions. Can Ronin be used to reprogram differentiated cells into those that more closely resemble embryonic stem cells? What is the significance of the portion of Ronin that resembles a “jumping gene” or transponson called P element transposase, usually found in the genomes of fruit flies?

Ronin is also found in areas of the brain such as the hippocampus and the Purkinje cells of the cerebellum.

“What role does it play in the brain?” asked Zwaka.

Media Contact

Glenna Picton EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors