Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nerve Cells Derived from Stem Cells May Lead to Brain Treatment

26.06.2008
Burnham Scientists have genetically programmed embryonic stem cells to become nerve cells when transplanted into the brain. The research, an important step toward developing new treatments for stroke, Alzheimer’s, Parkinson’s and other neurological conditions showed that mice afflicted by stroke showed tangible therapeutic improvement following transplantation of these cells.

Scientists at the Burnham Institute for Medical Research have, for the first time, genetically programmed embryonic stem (ES) cells to become nerve cells when transplanted into the brain, according to a study published today in The Journal of Neuroscience.

The research, an important step toward developing new treatments for stroke, Alzheimer’s, Parkinson’s and other neurological conditions showed that mice afflicted by stroke showed tangible therapeutic improvement following transplantation of these cells. None of the mice formed tumors, which had been a major setback in prior attempts at stem cell transplantation.

The team was led by Stuart A. Lipton, M.D., Ph.D., professor and director of the Del E. Webb Neuroscience, Aging, and Stem Cell Research Center at Burnham. Dr. Lipton is also a clinical neurologist who treats patients with these disorders. Collaborators included investigators from The Scripps Research Institute.

... more about:
»Lipton »MEF2C »Nerve »Parkinson

“We found that we could create new nerve cells from stem cells, transplant them effectively and make a positive difference in the behavior of the mice,” said Dr. Lipton. “These findings could potentially lead to new treatments for stroke and neurodegenerative diseases such as Parkinson’s disease.”

Conditions such as stroke, Alzheimer’s, Parkinson’s and Huntington’s disease destroy brain cells, causing speech and memory loss and other debilitating consequences. In theory, transplanting neuronal brain cells could restore at least some brain function, just as heart transplants restore blood flow.

Prior to this research, creating pure neuronal cells from ES cells had been problematic as the cells did not always differentiate into neurons. Sometimes they became glial cells, which lack many of the neurons’ desirable properties. Even when the neuronal cells were created successfully, they often died in the brain following transplant—a process called programmed cell death or apoptosis. In addition, the cells would sometimes become tumors.

Dr. Lipton solved these problems by inducing ES cells to express a protein, discovered in his laboratory called myocyte enhancer factor 2C (MEF2C). MEF2C is a transcription factor that turns on specific genes which then drive stem cells to become nerve cells. Using MEF2C, the researchers created colonies of pure neuronal progenitor cells, a stage of development that occurs before becoming a nerve cell, with no tumors. These cells were then transplanted into the brain and later became adult nerve cells. MEF2C also protected the cells from apoptosis once inside the brain.

“To move forward with stem cell-based therapies, we need to have a reliable source of nerve cells that can be easily grown, differentiate in the way that we want them to and remain viable after transplantation,” said Dr. Lipton. “MEF2C helps this process first by turning on the genes that, when expressed, make stem cells into nerve cells. It then turns on other genes that keep those new nerve cells from dying. As a result, we were able to produce neuronal progenitor cells that differentiate into a virtually pure population of neurons and survive inside the brain.”

The next step was to determine whether the transplanted neural progenitor cells became nerve cells that integrated into the existing network of nerve cells in the brain. Performing intricate electrical studies, Dr. Lipton’s investigative team showed that the new nerve cells, derived from the stem cells, could send and receive proper electrical signals to the rest of the brain. They then determined if the new cells could provide cognitive benefits to the stroke-afflicted mice. The team executed a battery of neurobehavioral tests and found that the mice that received the transplants showed significant behavioral improvements, although their performance did not reach that of the non-stroke control mice. These results suggest that MEF2C expression in the transplanted cells was a significant factor in reducing the stroke-induced deficits.

The work was supported in part by National Institutes of Health (NIH) grants and a Senior Scholar Award in Aging Research from the Ellison Medical Foundation.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham is one of the fastest growing research institutes in the country with operations in California and Florida. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | newswise
Further information:
http://www.burnham.org

Further reports about: Lipton MEF2C Nerve Parkinson

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>