Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Capturing DNA molecules in a nanochannel

25.06.2008
Precision control of DNA separation using an electric field

An electric voltage can be used to propel DNA molecules through a channel a few nanometers deep, or to stop them in their tracks.

In a strong electric field the molecules judder along the channel, while in weaker fields they move more smoothly. This enables DNA fragments to be ‘captured’ on a chip and separated for analysis. University of Twente researchers will soon publish details of this work in Nano Letters.

The researchers found that, when forced through extremely shallow channels just 20 nanometers deep and a few micrometers wide, DNA molecules behave very differently than they do in free solution. In the latter situation they tend to form clumps, while molecules in the channels are forced into an elongated straitjacket.

... more about:
»DNA »Electric »Mobility

This effect alone produces a difference in mobility between long and short molecules. Moreover, exposure to an electric field has now been shown to have a substantial effect. This presents a range of new options for the separation of fragments (and entire molecules) of DNA. The previous technique, known as gel electrophoresis, involved the use of micro-channels filled with a gel.

According to researcher Georgette Salieb-Beugelaar, the laborious and time-consuming process of pouring in the gel can be rendered obsolete by the new method.

Roughness
In their Nano Letters article, the researchers ascribe the difference in mobility to factors such as the roughness of the channels’ surfaces. A DNA molecule can easily be 1000 times longer than the channels are deep. As a result, it encounters minute surface irregularities at many different points, an effect that is reinforced by the electric field. This seems to be the cause of the stagnation in mobility that occurs in strong fields. It presents an opportunity to capture fragments and – using weaker fields - to accurately control their onward motion. This is the first demonstration of varying mobility in electric fields of differing strengths.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://www.utwente.nl/nieuws/pers/en/cont_08-030_en.doc/

Further reports about: DNA Electric Mobility

More articles from Life Sciences:

nachricht Colour vision in primates closely linked to palm fruit colours
26.02.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Physicists from Hannover Predict Novel Light Molecules

26.02.2020 | Physics and Astronomy

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>