Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Process Brings Nanoparticles Into Focus

25.06.2008
Scientists can study the biological impacts of engineered nanomaterials on cells within the body with greater resolution than ever because of a procedure developed by researchers at the Department of Energy’s Oak Ridge National Laboratory.

The method, detailed in the current issue of Nature Nanotechnology, uses scanning near-field ultrasonic holography to clearly see nanoparticles residing within cells of laboratory mice that had inhaled single-walled carbon nanohorns. Nanohorns are short, horn-shaped tubular structures capped with a conical tip.

“While carbon-based materials have countless potential uses, we need to know how they interact within a cell – and whether they are able to penetrate cells,” said Laurene Tetard, lead author and a member of ORNL’s Biosciences Division. “We found that these nanohorns can indeed get into cells.”

With this new tool, researchers will be able to determine whether a cell’s shape changes because of nanomaterials such as the nanohorns used for this study. Tetard and co-authors expect this work to be of significant benefit to scientists studying drug delivery systems, nanotoxicology and interactions between engineered nanomaterials and biological systems.

“The rising commercial use of engineered nanoparticles and the ensuing need for large-scale production pose a risk of unintended human exposure that may impact health,” the authors wrote. “Central to this issue is the ability to determine the fate of nanoparticles in biological systems and in more details their route after inhalation.”

In contrast to conventional imaging techniques, scanning near-field ultrasonic holography provides a detailed look inside a cell, providing nanometer resolution.

“Conventional atomic force microscopy using a cantilever tip can only probe the surface of a specimen, making it difficult to analyze structures that are inside a cell,” Tetard said. “Our method benefits from all of the advantages of a standard atomic force microscope but provides access to some of the features buried inside the cell.”

Ultimately, this new imaging capability could help advance the field of nanoparticles-cell interactions. In addition to the high-resolution subsurface imaging and localization of nanoparticles in biological samples, scanning near-field ultrasonic holography allows for minimal sample preparation and requires no labeling with radioisotopes. The technique also offers relatively high throughput sample analysis, which enables researchers to image many cells quickly.

“The scanning near-field ultrasonic holography method should be especially useful for determining the efficacy of cell type-specific drug targeting, which is a critical goal for medical uses of nanomaterial,” wrote the authors, who expect their results to help resolve critical questions about the fate and potential toxicity of nanoparticles within the body.

Co-authors of the paper, titled “Imaging nanoparticles in cells by nanomechanical holography,” are Ali Passian, Katherine Venmar, Rachel Lynch, Brynn Voy and Thomas Thundat of ORNL and Gajendra Shekhawat and Vinayak Dravid of Northwestern University. Researchers at ORNL’s Center for Nanophase Materials Sciences provided nanohorns for this work.

Funding was provided by the Department of Energy Office of Science, Biological and Environmental Research and by the Laboratory Directed Research and Development program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | newswise
Further information:
http://www.ornl.gov/news
http://www.ornl.gov/ORNLReview/

Further reports about: Nanomaterial Ultrasonic holography nanohorns nanoparticles near-field

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>