Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug reverses mental retardation caused by genetic disorder

24.06.2008
UCLA mouse study offers hope for correcting how autism disrupts brain

UCLA researchers discovered that an FDA-approved drug reverses the brain dysfunction inflicted by a genetic disease called tuberous sclerosis complex (TSC). Because half of TSC patients also suffer from autism, the findings offer new hope for addressing learning disorders due to autism. Nature Medicine publishes the findings in its online June 22 edition.

Using a mouse model for TSC, the scientists tested rapamycin, a drug approved by the FDA to fight tissue rejection following organ transplants. Rapamycin is well-known for targeting an enzyme involved in making proteins needed for memory. The UCLA team chose it because the same enzyme is also regulated by TSC proteins.

"This is the first study to demonstrate that the drug rapamycin can repair learning deficits related to a genetic mutation that causes autism in humans. The same mutation in animals produces learning disorders, which we were able to eliminate in adult mice," explained principal investigator Dr. Alcino Silva, professor of neurobiology and psychiatry at the David Geffen School of Medicine at UCLA. "Our work and other recent studies suggest that some forms of mental retardation can be reversed, even in the adult brain."

... more about:
»Autism »Genetic »Mental »Rapamycin »TSC »UCLA »retardation

"These findings challenge the theory that abnormal brain development is to blame for mental impairment in tuberous sclerosis," added first author Dan Ehninger, postgraduate researcher in neurobiology. "Our research shows that the disease's learning problems are caused by reversible changes in brain function -- not by permanent damage to the developing brain."

TSC is a devastating genetic disorder that disrupts how the brain works, often causing severe mental retardation. Even in mild cases, learning disabilities and short-term memory problems are common. Half of all TSC patients also suffer from autism and epilepsy. The disorder strikes one in 6,000 people, making it twice as common as Huntington's or Lou Gehrig's disease.

Silva and Ehninger studied mice bred with TSC and verified that the animals suffered from the same severe learning difficulties as human patients. Next, the UCLA team traced the source of the learning problems to biochemical changes sparking abnormal function of the hippocampus, a brain structure that plays a key role in memory.

"Memory is as much about discarding trivial details as it is about storing useful information," said Silva, a member of the UCLA Department of Psychology and UCLA Brain Research Institute. "Our findings suggest that mice with the mutation cannot distinguish between important and unimportant data. We suspect that their brains are filled with meaningless noise that interferes with learning."

"After only three days of treatment, the TSC mice learned as quickly as the healthy mice," said Ehninger. "The rapamycin corrected the biochemistry, reversed the learning deficits and restored normal hippocampal function, allowing the mice's brains to store memories properly."

In January, Silva presented his study at the National Institute of Neurological Disorders and Stroke meeting, where he was approached by Dr. Petrus de Vries, who studies TSC patients and leads rapamycin clinical trials at the University of Cambridge. After discussing their respective findings, the two researchers began collaborating on a clinical trial currently taking place at Cambridge to examine whether rapamycin can restore short-term memory in TSC patients.

"The United States spends roughly $90 billion a year on remedial programs to address learning disorders," noted Silva. "Our research offers hope to patients affected by tuberous sclerosis and to their families. The new findings suggest that rapamycin could provide therapeutic value in treating similar symptoms in people affected by the disorder."'

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: Autism Genetic Mental Rapamycin TSC UCLA retardation

More articles from Life Sciences:

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

nachricht New method for the measurement of nano-structured light fields
23.09.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DNA is held together by hydrophobic forces

23.09.2019 | Life Sciences

The best of two worlds: Magnetism and Weyl semimetals

23.09.2019 | Materials Sciences

"Pheno-Inspect" accelerates plant cultivation

23.09.2019 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>