Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could new discovery about a shape-shifting protein lead to a mighty 'morpheein' bacteria fighter?

24.06.2008
A small molecule that locks an essential enzyme in an inactive form could one day form the basis of a new class of unbeatable, species-specific antibiotics, according to researchers at Fox Chase Cancer Center.

Their findings, highlighted on the cover of the June 23 issue of the journal Chemistry & Biology, take advantage of an emerging body of science regarding "morpheeins" – proteins made from individual components that are capable of spontaneously reconfiguring themselves into different shapes within living cells.

The researchers discovered a small molecule, which they have named morphlock-1, binds the inactive form of a protein known as porphobilinogen synthase (PBGS), an enzyme used by nearly all forms of cellular life. The functioning form of PBGS is built from eight identical component parts – in what is called an octamer configuration – and is essential among nearly all forms of life in the processes that enable cells to use energy. The other configuration is made of six parts – or a hexamer configuration – and serves as a "standby" mode for the protein.

"As the name suggests, morphlock-1 essentially locks the hexamer configuration into place, preventing its protein subunits from reconfiguring into the active assembly," says lead investigator Eileen Jaffe, Ph.D, a Senior Member of Fox Chase. "Targeting morpheeins in their inactive assemblies provides an entirely new approach to drug discovery."

... more about:
»Jaffe »PBGS »Protein »bacteria »enzyme »hexamer »morpheein »morphlock-1

While their study was performed using a pea plant-version of PBGS, the researchers have reason to believe the principle could apply to bacterial versions of PBGS as well. "Using morphlock-1 as a base, we are seeking to fine tune the molecule so that it blocks just the bacterial version of the PBGS enzyme, " Jaffe says.

"Because PBGS is so crucial for life, the part of the enzyme where chemistry happens is highly conserved through evolution," Jaffe says, meaning that an all-around PBGS-inhibiting drug would harm bacteria, peas and people alike. The area where the potential drug binds to the hexamer form of the protein, however, has been found to differ among species, depending how far the organisms have evolved from each other.

When PBGS is in its inactive hexamer form, there is a small cavity on the surface of the assembled complex. Using computer docking techniques, Jaffe and her Fox Chase colleagues identified a suite of small molecules predicted to bind to this cavity.

The researchers then bought and tested a selection of these molecules in the lab to see if any of them stabilized the pea PBGS in its hexamer assembly. One inhibitor in particular, given the name morphlock-1, potently drove the formation of the hexamer in pea PBGS, but not in that of humans, fruit flies, or the infectious bacteria Pseudomonas aeruginosa, or Vibrio cholerae, the latter of which causes cholera. Morphlock-1 is a potent inhibitor of pea PBGS, but not of the PBGS from these other organisms.

Jaffe coined the term "morpheein" in 2005 after a study of the structure of PBGS revealed its shape-shifting tendencies. While initially met with skepticism because the existence of morpheeins contradicts some classic concepts about protein structure and function, subsequent studies have reinforced that PBGS (and perhaps other proteins) exhibits this behavior. According to Jaffe, this study is the first to make use of alternate morpheein shapes as a potential strategy for drug discovery, in general, particularly for antibiotics.

"Multi-drug resistance drives the need for developing new antibiotics," Jaffe says. "Since drugs that stabilize the inactive PBGS hexamer need not be chemically similar to each other, it will be difficult for the bacterium to develop complete resistance to a cocktail of such compounds."

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Jaffe PBGS Protein bacteria enzyme hexamer morpheein morphlock-1

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>