Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pumice as a Time Witness

23.06.2008
A chemist of Vienna University of Technology demonstrates how chemical fingerprints of volcanic eruptions and numerous pumice lump finds from archaeological excavations illustrate relations between individual advanced civilisations in the Eastern Mediterranean. Thanks to his tests and to the provenancing of the respective pumice samples to partially far-reaching volcanic eruptions, it became possible to redefine a piece of cultural history from the second millenium B.C.

During the Bronze Age, between the years 3000 and 1000 B.C., the Mediterranean was already intensely populated. Each individual culture, whether it may be the Egyptian one, the Syrian one, or the Minoan culture from Santorini, has in most cases its own well-researched, chronological history.

However, the connection between these individual cultures and locations is often missing for the most part because more often than not, there is no correspondence or similar exchange that has taken place, has been preserved, or is comprehensible. It is so much more difficult to synchronize the individual cultures among themselves.

An international research program of the Austrian Science Fund (FWF) called "SCIEM2000" is now opening new perspectives in this field. A research team of the Atomic Institute of the Austrian Universities under the leadership of Professor Max Bichler is engaged in identifying volcanic rocks from archaeological excavations. Georg Steinhauser, Project Assistant and Chemist at the Department of Radiation Physical Analysis and Radiochemistry of the Atomic Institute says: "Pumice is a foamy volcanic rock. Today, we know the rock that is floating on water mainly as a cosmetic remedy for instance for sole callus."

... more about:
»Santorini »archaeological »pumice »volcano

Pumice was also often used in ancient times as an abrasive and is repeatedly found in archaeological excavations in the Mediterranean Sea. Since volcanoes are not found everywhere, however, intense commercial activities related to this product were unleashed. "In Egypt, pumice was found in ancient workshops. In some of the excavations, there was even rock that still presented the right abrasion traces. They were used to polish sculptures, constructions, bronze objects, and so forth. Chemical tests enable us to trace back from which volcanoes the samples came," explains Georg Steinhauser.

Pumice in particular, just like the fine-grained volcano ashes, has a specific chemical composition, a characteristic "cocktail" on trace elements. Based on this, the researchers can generate a chemical fingerprint and can compare it to the data base the way it is done in criminology. Hence, pumices out of the Mediterranean volcanic centres as well as from archaeologically relevant pumice finds are being analysed. If the fingerprint of the find matches that of a rock type in the data base, then the origin can be undoubtedly determined.

So there is the immediate assumption that the Egyptians have surely ordered pumice from Greece. The researchers were able to determine these commercial relations by means of the instrumental neutron-activation analysis (INAA) by which the pumice samples in the research reactor are being irradiated with neutrons and subsequently measured with a gamma spectrometer. This way, the chemical fingerprint is generated with 25 characteristic main and trace elements. "We were able to discover that pumice as a commodity (presumably seaborne) covered distances of up to 2,000 km in the Mediterranean Sea.

The eruption of the volcanic island Santorini, about 1,600 B.C., represents a particular time indicator. It was so powerful, that the entire Minoan culture was obliterated. When we find today this layer of ashes respectively pumice in various archaeological excavations, this offers immediately a time marker and enables us to synchronize different cultures. This also enables us to determine which rulers were in power in different locations at a certain time," states Steinhauser. When a pumice lump from Santorini is found in an excavation, we can at least say that the Santorini volcano must have already erupted, and the time of the eruption corresponds consequently to the maximum age of the excavation discovery place.

For futher inquiries, you may contact:
Project Assistant (FWF) Mag. Dr. Georg Steinhauser
Atomic Institute of the Austrian Universities
Vienna University of Technology
Stadionallee 2, 1020 Vienna
Telephone: +43/1/58801 - 14189
Fax: +43/1/58801 - 14199
E-mail: georg.steinhauser@ati.ac.at
Spokesperson:
Mag. Daniela Hallegger
TU Vienna - PR and Communication
Karlsplatz 13/E011, A-1040 Vienna
Telephone: +43-1-58801-41027
Fax: +43-1-58801-41093
E-mail: daniela.hallegger@tuwien.ac.at

Werner Sommer | idw
Further information:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/pr
http://www.tuwien.ac.at/index.php?id=7485

Further reports about: Santorini archaeological pumice volcano

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>