Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroids in female mouse urine light up nose nerves of male mice

19.06.2008
Love in the air?

A group of steroids found in female mouse urine goes straight to the male mouse's head, according to researchers at Washington University School of Medicine in St. Louis. They found the compounds activate nerve cells in the male mouse's nose with unprecedented effectiveness.

"These particular steroids, known as glucocorticoids (GCCs), are involved in energy metabolism, stress and immune function," says senior author Timothy E. Holy, Ph.D., assistant professor of neurobiology and anatomy. "They control many important aspects of the mouse's physiology and theoretically could give any mouse that sniffs them a detailed insider's view of the health of the animal they came from."

Holy plans further research to see if activating the nerves in the male mouse's nose leads to particular behavioral responses. He probes the male mouse's reaction to chemical signals from female mice to advance understanding of pattern recognition and learning in the much more complex human brain. In 2005, he found that female mice or their odors cause male mice to sing. He doesn't know yet if the GCC steroids' effects on the male mouse nose help to trigger this behavior.

... more about:
»GCC »compounds »olfactory »pheromones »steroids »urine

Science has long recognized that urine, sweat and other bodily fluids contain chemical communication signals called pheromones that can influence the biology or behavior of others. Most mammals use the information in these signals for social purposes, such as establishing territory or dominance, or in courtship and mating. In many cases, though, the specific chemical identities of the signals are unknown.

The new study, published in The Journal of Neuroscience and led by graduate student Francesco Nodari, identified compounds that are unusually potent stimulators of the mouse nose. The pheromones activate nerve cells 30 times as often as all the other pheromones previously identified in female mouse urine combined. In addition, several of the new signals activate specific nerve cells. This may mean the male mouse's brain can assess different aspects of female mouse health by selectively analyzing individual pheromones.

Stressing female mice led to a threefold increase in the levels of GCCs in their urine, directly linking the female mouse's health and the GCC pheromones.

The GCC pheromones that Nodari identified were sulfated, which means they had a chemical attachment comprised of sulfur and oxygen atoms. This attachment is added to deactivate the steroids prior to excretion in the urine. When Nodari used an enzyme to remove these attachments, the GCCs lost their ability to activate nerves, further suggesting that the link between the sulfated GCCs and the nerve cells is a channel fine-tuned by evolution to carry information from female mice to male mice.

The nerves researchers studied in the male mouse nose are located in an area known as the accessory olfactory system. Humans and many closely related apes don't have an accessory olfactory system, but most other mammals and some reptiles do. The system, found in a structure called the vomeronasal organ, sends its outputs to a different part of the brain than the main olfactory system. Like the main olfactory system, it's dedicated to detecting airborne particles. But researchers believe the accessory olfactory system focuses on compounds from sources that are physically very close to or touching the animal.

According to Holy, this focus on scents from nearby sources makes the accessory olfactory system "halfway between a taste system and a sense of smell." He believes the GCC pheromones account for approximately 75 percent of the signals detected in female urine by the male accessory olfactory system.

"Because these new pheromones are so good at activating the accessory olfactory system, they will be very helpful in efforts to better understand what this system does," he says. "That high degree of activation likely also means they have much potential for advancing the general study of pheromones."

To follow up, Holy's lab is testing to see how mice change their behavior when they smell these compounds. They are also searching for additional pheromonal cues that the accessory olfactory system can detect in female urine.

Nodari F, Hsu F-F, Fu X, Holekamp TF, Kao L-F, Turk J, Holy TE. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. The Journal of Neuroscience, June 18, 2008.

Funding from the United States Public Health Service supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: GCC compounds olfactory pheromones steroids urine

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>