Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steroids in female mouse urine light up nose nerves of male mice

19.06.2008
Love in the air?

A group of steroids found in female mouse urine goes straight to the male mouse's head, according to researchers at Washington University School of Medicine in St. Louis. They found the compounds activate nerve cells in the male mouse's nose with unprecedented effectiveness.

"These particular steroids, known as glucocorticoids (GCCs), are involved in energy metabolism, stress and immune function," says senior author Timothy E. Holy, Ph.D., assistant professor of neurobiology and anatomy. "They control many important aspects of the mouse's physiology and theoretically could give any mouse that sniffs them a detailed insider's view of the health of the animal they came from."

Holy plans further research to see if activating the nerves in the male mouse's nose leads to particular behavioral responses. He probes the male mouse's reaction to chemical signals from female mice to advance understanding of pattern recognition and learning in the much more complex human brain. In 2005, he found that female mice or their odors cause male mice to sing. He doesn't know yet if the GCC steroids' effects on the male mouse nose help to trigger this behavior.

... more about:
»GCC »compounds »olfactory »pheromones »steroids »urine

Science has long recognized that urine, sweat and other bodily fluids contain chemical communication signals called pheromones that can influence the biology or behavior of others. Most mammals use the information in these signals for social purposes, such as establishing territory or dominance, or in courtship and mating. In many cases, though, the specific chemical identities of the signals are unknown.

The new study, published in The Journal of Neuroscience and led by graduate student Francesco Nodari, identified compounds that are unusually potent stimulators of the mouse nose. The pheromones activate nerve cells 30 times as often as all the other pheromones previously identified in female mouse urine combined. In addition, several of the new signals activate specific nerve cells. This may mean the male mouse's brain can assess different aspects of female mouse health by selectively analyzing individual pheromones.

Stressing female mice led to a threefold increase in the levels of GCCs in their urine, directly linking the female mouse's health and the GCC pheromones.

The GCC pheromones that Nodari identified were sulfated, which means they had a chemical attachment comprised of sulfur and oxygen atoms. This attachment is added to deactivate the steroids prior to excretion in the urine. When Nodari used an enzyme to remove these attachments, the GCCs lost their ability to activate nerves, further suggesting that the link between the sulfated GCCs and the nerve cells is a channel fine-tuned by evolution to carry information from female mice to male mice.

The nerves researchers studied in the male mouse nose are located in an area known as the accessory olfactory system. Humans and many closely related apes don't have an accessory olfactory system, but most other mammals and some reptiles do. The system, found in a structure called the vomeronasal organ, sends its outputs to a different part of the brain than the main olfactory system. Like the main olfactory system, it's dedicated to detecting airborne particles. But researchers believe the accessory olfactory system focuses on compounds from sources that are physically very close to or touching the animal.

According to Holy, this focus on scents from nearby sources makes the accessory olfactory system "halfway between a taste system and a sense of smell." He believes the GCC pheromones account for approximately 75 percent of the signals detected in female urine by the male accessory olfactory system.

"Because these new pheromones are so good at activating the accessory olfactory system, they will be very helpful in efforts to better understand what this system does," he says. "That high degree of activation likely also means they have much potential for advancing the general study of pheromones."

To follow up, Holy's lab is testing to see how mice change their behavior when they smell these compounds. They are also searching for additional pheromonal cues that the accessory olfactory system can detect in female urine.

Nodari F, Hsu F-F, Fu X, Holekamp TF, Kao L-F, Turk J, Holy TE. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. The Journal of Neuroscience, June 18, 2008.

Funding from the United States Public Health Service supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: GCC compounds olfactory pheromones steroids urine

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>