Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lizards pull a wheelie

17.06.2008
Why bother running on hind legs when the four you've been given work perfectly well? This is the question that puzzles Christofer Clemente. For birds and primates, there's a perfectly good answer: birds have converted their forelimbs into wings, and primates have better things to do with their hands.

But why have some lizards gone bipedal? Have they evolved to trot on two feet, or is their upright posture simply a fluke of physics? Curious to find the answer, Clemente and his colleagues Philip Withers, Graham Thompson and David Lloyd decided to test how dragon lizards run on two legs.

But first Clemente had to catch his lizards. Fortunately Thompson was a lizard-tracking master. Driving all over the Australian outback, Clemente and Thompson eventually collected 16 dragon lizard species, ranging from frilled neck lizards to the incredibly rare C. rubens, found only on a remote Western Australian cattle station. Returning to the Perth lab, Clemente and Withers set the lizards running on a treadmill, filming the reptiles until they were all run-out.

Clemente admits that when he started, he thought that the lizards would fall into one of two groups; lizards that mostly ran on two legs, occasionally resorting to four, and lizards that never reared up. Not so. Even the lizards that he'd never seen on two legs in the wild managed an occasional few steps on their hind legs. In fact, the lizards' propensity for running on two legs seemed to be a continuum; C. rubens and P. minor spent only 5% of the time on their hind legs while L. gilberti spent 95% up on two.

... more about:
»Legs »hind »lizards'

Curious to know whether or not bipedalism has evolved, Clemente drew up the lizards' family tree and plotted on the percentage of time each species spent on their rear legs, but there was no correlation. The reptiles had not evolved to move on two feet. Something else was driving them off their front legs; but what?

According to Clemente, other teams had already suggested reasons for the lizards rearing up; maybe running on two legs was faster or more economical than running on all four. But when Clemente analysed the lizard running footage he realised that running on hind legs was more energetically costly, and the bipedal runners were no faster than the quadrupeds. Knowing that Peter Aerts had suggested that lizards improved their manoeuvrability by moving their centre of mass back towards the hips, Clemente wondered whether the lizards' front legs were leaving the ground because of the position of their centre of mass. Maybe they were 'pulling a wheelie'.

Teaming up with David Lloyd and modelling the running lizards' movements as the lizards accelerated, they realised that there was a strong correlation between the lizards' acceleration and their front legs pulling off the ground. Clemente explains that by moving their centre of mass, a turning force acts on the lizards' torso; lifting it off the ground making them run upright.

So running on two legs is a natural consequence of the lizards' acceleration. Clemente adds that 'some dragon lizards have exploited the consequence and chosen to go bipedal because it gives them some advantage, but we have no idea what that advantage is'.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com

Further reports about: Legs hind lizards'

More articles from Life Sciences:

nachricht Numbers count in the genetics of moles and melanomas
16.08.2019 | University of Queensland

nachricht Working out why plants get sick
16.08.2019 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>