Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR chemists use 'green chemistry' to produce amines, chemical compounds used widely in industry

17.06.2008
Catalyst discovered in Guy Bertrand's lab helps produce amines at low cost and no waste products

Chemists at UC Riverside have discovered an inexpensive, clean and quick way to prepare amines – nitrogen-containing organic compounds derived from ammonia that have wide industrial applications such as solvents, additives, anti-foam agents, corrosion inhibitors, detergents, dyes and bactericides.

Currently, industries produce amines in a costly two-step process that results in massive amounts of byproducts as waste.

"Although there are several methods to prepare amines on laboratory scales, most of them are not suitable for commodity chemical production not only because of the formation of waste materials but also because the cost of the starting substances used to prepare amines is high," said Guy Bertrand, a distinguished professor of chemistry, whose lab made the discovery.

... more about:
»Organic »UCR »ammonia »catalyst »produce

Bertrand explained that, currently, companies use hydrochloric acid, a highly corrosive solution, to produce amines. To generate one ton of amines, manufacturers must discard three tons of byproducts, adding to the overall cost of production.

"Our 'green chemistry' method, however, produces no waste, which makes it inexpensive," Bertrand said. "Moreover, the reaction is a quick one-step reaction, and you need a tiny amount of a catalyst to do the trick." (A catalyst is a substance which increases the rate of a chemical reaction without itself being used up in the reaction.)

Study results appear online in Angewandte Chemie. A print version of the research paper will appear soon in the journal as well.

The catalyst in question – a gold atom linked to a cyclic alkyl amino carbene or CAAC – is a ligand (a special molecule that binds to metals) that Bertrand's lab discovered in 2005.

The gold compound readily catalyzes the addition of ammonia – a colorless, pungent gas composed of nitrogen and hydrogen – to a number of organic compounds. One such chemical reaction involves ammonia combining with acetylene to produce an amine derivative; a carbon-nitrogen bond is created in this reaction.

"One of the greatest challenges in chemistry is to develop atom-efficient processes for the combination of ammonia with single organic molecules to create carbon-nitrogen bonds," Bertrand said. In atom-efficient processes, the amount of starting materials equals the amount of all products generated, with no atoms wasted.

More than 100 million tons of ammonia are produced annually in the world, and the production of amines similarly is huge. Essential to life as constituents of amino acids, amines occur in drugs and vitamins, and are used also to manufacture cosmetics, cleaning and crop protection agents, plastics, and coating resins.

"Our study paves the way for finding catalysts that mediate the addition of ammonia to simple alkenes, which are organic compounds containing a carbon-carbon double bond," Bertrand said. "This process is widely considered to be one of the ten greatest challenges for catalytic chemistry."

Bertrand, an internationally renowned scientist and a member of the French Academy of Sciences, came to UCR in 2001 from France's national research agency, the Centre National de la Recherche Scientifique (CNRS). At UCR, he directs the UCR-CNRS Joint Research Chemistry Laboratory, the first permanent French science laboratory in the United States.

He was joined in the research by UCR's Vincent Lavallo (now a postdoctoral researcher at the California Institute of Technology, Pasadena), Guido D. Frey, Bruno Donnadieu and Michele Soleilhavoup.

UCR's Office of Technology Commercialization has filed a patent application on the new catalyst developed in Bertrand's lab, and is seeking commercial partners to develop it.

The National Institutes of Health and Rhodia, Inc., funded the study.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is planning a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

Further reports about: Organic UCR ammonia catalyst produce

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>