Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Integrated control of malaria and other vector diseases is crucial

13.06.2008
Combating malaria and other so-called vector diseases with chemical controls is increasingly ineffective, besides being hazardous for humans and the environment. These chemical controls must therefore be eliminated.

In order to combat the diseases that insects and ticks transmit, all possible strategies must be united. Only then can we successfully combat these stubborn and escalating disease threats. Prof. Willem Takken made this proposal during his inaugural address as Professor of Medical and Veterinary Entomology at Wageningen University (the Netherlands).

Even now, says Prof. Takken, the many human and animal diseases transmitted by insects and ticks (the so-called vector diseases) claim countless lives in the world, not only in developing countries but also increasingly in the West. Government agencies and public bodies should make combating these diseases a top priority.

Due to the intensification of international commerce and tourism, more tropical and sub-tropical diseases find their way to Europe. In addition, changes in climate mean that these diseases can more often thrive in moderate climate zones. Examples include Bluetongue virus, which recently appeared in the Netherlands, and the increase in Lyme disease, but also West Nile virus, dengue and chikungunya.

... more about:
»DDT »Malaria »Takken »insects »vector

Every year, 4 billion people are exposed to malaria worldwide and 500 to 600 million of them become infected. Initially, in the 1940s and 1950s, the disease was combated very successfully with DDT. However, it gradually became apparent that the insects were becoming resistant to DDT and that this pesticide had very detrimental effects on human health and the environment. This led to DDT being banned in many countries, which in turn meant that the control of the disease virtually stopped between 1969 and 1999.

Prof. Takken is alarmed that some countries have again started using DDT. It has been shown that chemical control measures only work for a limited time and are not sustainable. Therefore an entirely different strategy must be developed which will provide a lasting solution to the malaria problem. He draws attention to the biological crop protection agents used for controlling pests and diseases in greenhouse horticulture. Currently, 95% of all vegetables from greenhouse horticulture in Western Europe are grown without insecticides. Prof. Takken wondered why this approach was not being used with vector diseases. Therefore he set the goal of controlling malaria without the use of chemical pesticides.

According to Prof. Takken, there must be more coherence in combating vector diseases. Important steps have been taken in recent decades towards a new approach for controlling malaria. The staff of Wageningen University have contributed to many of these steps, such as a cloth impregnated with a fungus that affects mosquitoes, or more recently, the development of scent traps to lure malaria mosquitoes away from houses and huts and then catch them.

But there are also other strategies, not only spectacular ones such as the biological control of larvae or the genetic modification of mosquitoes so that they can no longer transmit malaria, but also effective everyday methods, such as improving houses so that they keep mosquitoes outside, or better management of surface water where mosquitoes lay their eggs.

Takken argues for what he calls the integrated vector management concept, which takes account of all factors that play a role in the spread of malaria. The risks – which are already obvious – require immediate measures; there is no time to wait for new vaccines or new, acceptable chemical control measures.

Takken cites three scientific and technological developments which could be very important: the major developments in the area of molecular biology, the great progress that has been made with chemical ecology and the new developments in Geographic Information Systems and Remote Sensing. Takken proposes developing a strategy to deal specifically with the insects and ticks that are responsible for many diseases in humans and animals.

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: DDT Malaria Takken insects vector

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>