Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers block the transmission of malaria in animal tests

10.06.2008
By disrupting the potassium channel of the malaria parasite, a team of researchers has been able to prevent the malaria parasites from forming in mosquitoes and has thereby broken the cycle of infection during recent animal tests.

By genetically altering the malaria parasite through gene knock-out technology, a research team consisting of scientists at the University of Copenhagen and John Hopkins University, Baltimore, has prevented the parasite from going through the normal stages of its life cycle and developing a cyst (egg-like structure or occyst), which spawns new infectious parasites."

As it is exclusively the parasites from these oocysts that can infect new individuals, we were able to prevent the disease from being transmitted to the animals in our tests", explains Assistant Professor, Peter Ellekvist from the University of Copenhagen.

The findings have been published in the scientific journal Proceedings of the National Academy of Sciences, USA, (2008 105: 6398-6402).

... more about:
»Animal »Ion »Malaria »parasite »potassium

The intervention "disrupts" the parasites complex life cycle

The malaria parasite has an extremely complicated lifecycle, which starts with the fertilisation of the parasites male and female gametes and the formation of an oocyst, in the mosquito's stomach wall. The oocyst further develops into sporozoittes, which travel up the mosquito's salivary gland and from there are transmitted to people, when the mosquito secures its next blood meal. After residing for a short period in the liver cells, the parasites then infect the red blood cells, thereby wreaking havoc in the human body. The malaria parasites are able to reproduce both through sexual reproduction when they inhabit a mosquito (and are transmitted to the host) and via asexual reproduction when they reside in the human body (replication in the host). For scientists to successfully counteract malaria, they must tackle both the transmission from person to person by the mosquitoes and the spread of the malaria parasites in the infected individual.

The potassium channels are important for all cells

All animal and plant cells contain so-called ion channels. These are small pores which allow ions to move in and out through an otherwise impermeable cell membrane. The potassium channels are a sub-type of ion channel, found in all cells. Though the function of the potassium channels vary, they play a crucial role in a variety of biological processes, e.g. influencing the ability of the nerves to send electrical signals and the heart muscle to contract rhythmically.

Assistant Professor Peter Ellekvist explains that his interest in malaria led to a research collaboration with Professor Dan Klærke, who studies potassium channels at the University of Copenhagen. In collaboration with Professor Nirbhay Kumar and other colleagues from the Malaria Research Institute at John Hopkins University in Baltimore, the two researchers were able to manipulate the parasite's genes so as to ensure that the potassium channel no longer functioned. To their surprise, however, this intervention did not, in the first instance, appear to have any effect on the parasites.

"The gene knock-out parasites essentially killed the mice in the animal tests just as quickly as the "natural" parasites, that had not undergone genetic manipulation," explains Peter Ellekvist. "However, we found that the only parasites that were unable to reproduce sexually, were those with non-functioning potassium channels."

The experiments had effectively disrupted the insect's ability to pass on the disease.

Further research required

The next step for the research team is to examine whether parasites with non-functioning potassium channels react differently to anti-malaria drugs. A success here would allow the researchers to break the second phase of the infection cycle and prevent the asexual reproduction of the malaria parasites that have already gained access to the human body. Blocking the potassium channels of parasites in the body could, for example, render them more susceptible to anti-malaria drugs. Further testing is also required to see whether the manipulation of the potassium channels may also affect the other stages of the parasites lifecycle, such as their development within the liver cells.

Sandra Szivos | alfa
Further information:
http://healthsciences.ku.dk/newslist/potassium/

Further reports about: Animal Ion Malaria parasite potassium

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>