Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arsenic and New Rice

10.06.2008
Amid recent reports of dangerous levels of arsenic being found in some baby rice products, scientists have found a protein in plants that could help to reduce the toxic content of crops grown in environments with high levels of this poisonous metal.

Publishing in the open access journal BMC Biology, a team of Scandinavian researchers has revealed a set of plant proteins that channel arsenic in and out of cells.

Arsenic is acutely toxic and a highly potent carcinogen, but is widespread in the earth's crust and easily taken up and accumulated in crops. Contaminated water is the main source of arsenic poisoning, followed by ingestion of arsenic-rich food, especially rice that has been irrigated with arsenic-contaminated water. According to the WHO, arsenic has been found approaching or above guideline limits in drinking water in Argentina, Australia, Bangladesh, Chile, China, Hungary, India, Mexico, Peru, Thailand, and the US.

Until now, scientists have been unable to identify which proteins are responsible for letting arsenite, the form of arsenic that damages cellular proteins, into plant cells. Now Gerd Bienert and his colleagues from the University of Copehangen, Denmark and the University of Gothenburg, Sweden, are the first to show that a family of transporters, called nodulin26-like intrinsic protein (NIPs), can move arsenite across a plant cell membrane. NIPs are related to aquaglyceroporins found in microbes and mammalian cells and which have already been shown to function as arsenite channels in these other organisms.

... more about:
»NIP »Protein »arsenic »arsenite »yeast

Bienert's team put the plant genes coding for different NIP transporters into yeast cells in order to test the cells for arsenic sensitivity. The researchers found that the growth of yeast containing certain plant NIPs was suppressed when arsenite, one of the predominant forms of arsenic found in soil, was added to the mix. They showed that the arsenite was channelled by NIPs and accumulated inside the yeast cells. Further investigations showed that only a subgroup of NIPs had arsenite transport capabilities, and have now been identified as metalloid channels in plants.

More surprisingly, the researchers also found that when they added arsenate some yeast, cells actually grew better and arsenite was released out of the cells. “It appears that some NIPs don't just transport arsenite in one direction”, says Bienert. “They are bidirectional and, given the right conditions, can clear cells of toxic arsenite as well as accumulate it. This striking exit of the accumulated arsenite in cells could have an important role to play in the detoxification of plants, especially coupled with possibility of engineering a transporter that discriminates against arsenite uptake in the first place.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcbiol/
http://www.biomedcentral.com/

Further reports about: NIP Protein arsenic arsenite yeast

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>