Niacin's role in maintaining good cholesterol

While niacin can increase plasma HDL levels, the mechanism of how it works has been mysterious, although it's believed that niacin does not actually increase HDL production. Recent work had uncovered that a component of ATP synthase (the protein that makes ATP) is present on the surface of liver cells, and this subunit known as the 'beta chain' can take up HDL.

Now, Moti Kashyap and colleagues found that this beta chain is the basis of niacin's effect. They added niacin to samples of human liver cells and found that treatment reduced the presence of Beta chain on the cell surface by ~27%, and as a result HDL uptake was reduced by ~35%. In comparison, nicotinamide, a related molecule with no clinical benefit, had far weaker effects.

These results indicate niacin hinders the liver from removing HDL from the blood, thus maintaining high plasma HDL levels. Importantly, niacin does not affect another major pathway known as “Reverse Cholesterol Transport.” Therefore, it maintains HDL levels while still allowing the removal of other cholesterol types, explaining why niacin is especially beneficial.

The work also identifies a new drug target, as no other drug in currently known to raise HDL by inhibiting the surface expression of the beta chain of ATP synthase.

Media Contact

Nick Zagorski EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors