Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke chemist has new way to tell right from left

09.06.2008
A Duke University chemist has apparently solved a long-standing frustration in creating certain synthetic molecules that make up drugs, which could lead to better drugs with fewer side effects.

Like human hands, many molecules that make up drugs come in two shapes, right and left. But usually only one of the two versions has the desired effect; the other is at best useless and sometimes even harmful. For example, side effects from the morning sickness drug Thalidomide resulted in profound birth defects because one shape of the molecule was therapeutic and the other was dangerous.

Don Coltart, an assistant professor of chemistry at Duke, appears to have found a way to make synthetic ketone molecules in just one version or the other using a process that is faster, cheaper and less wasteful than the best techniques now available.

And unlike previous attempts to make just one shape of these molecules, a process called asymmetric synthesis, the new method should be able to scaling up to industrial manufacturing quantities.

... more about:
»Molecule »ketone

"Asymmetric synthesis of ketones is not new, but we can do it more practically and easily," said Coltart, who developed the new technique with graduate student Daniel Lim."

Though well-known to the pharmaceutical industry, this problem of molecular handedness in ketones has been difficult to solve. Academic labs have succeeded at asymmetric synthesis over the last two decades, but only by using extreme conditions (e.g. temperatures of -100 degrees Celsius), and costly and time-consuming steps.

Conducted at zero C to -40 C, the new process uses a small molecule called a "chiral auxiliary" to attach pieces to a molecule being built, which causes the new pieces to have the correct handedness. The process is up to 98 percent accurate, Coltart said, and the auxiliary molecules can be easily released and recycled after they've done their work.

"He did something very different," said Samuel Danishefsky of Columbia University and the Memorial Sloan-Kettering Cancer Center, who is Coltart's former post-doctoral mentor. "You could have had a hundred people look at this problem and not see it the way he did. It's a very nice idea."

Coltart said there is a huge need for drug companies to be more selective to make better drugs with fewer side effects, which this new process might help achieve. Pharmaceutical companies might also use the new technique to turn existing formulations of drugs sold as mixtures into a pure form having only the active form of the drug, giving them another seven years of patent protection.

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: Molecule ketone

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>