Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme plays key role in cell fate

05.06.2008
The road to death or differentiation follows a similar course in embryonic stem cells, said researchers at Baylor College of Medicine in Houston in a report that appears online today in the journal Cell Stem Cell.

“Caspases, known as ‘killer enzymes,’ that are activated during programmed cell death, are also active in the initial phases of cell differentiation,” said Dr. Thomas Zwaka, assistant professor in the Stem Cells and Regenerative Medicine Center (STaR) at BCM.

Research into embryonic stem cells is basic to understanding differentiation, the process by which some of the earliest cells begin the process of becoming different tissues and organs. Scientists are eager to tap the potential of the pluripotent embryonic stem cells because they have the ability to become almost any kind of cell in the body. That is, however, just one of the possible fates they face. They are also capable of almost infinite self-renewal made possible by an autoregulatory loop including several key transcription factors (e.g., Oct4, Nanog). (Transcription factors bind to DNA to control the transfer of genetic information into RNA.)

The involvement of caspases in differentiation came as a surprise, said Zwaka. However, it makes a certain kind of sense.

... more about:
»Cell »Embryonic »Key »Stem »Zwaka »caspase »embryonic stem »enzyme »fate

“From a more philosophical point of view, programmed cell death (apoptosis) is a specialized form of differentiation,” said Zwaka. (Cells undergo apoptosis or programmed cell death for a variety of reasons – most of them related to keeping organisms or tissues healthy.)

In studies in his laboratory, he and his colleagues at BCM found an “overlap between the pathways that drive cell death and cell differentiation” in a group of enzymes called caspases.

“Caspases trigger differentiation,” he said. “If you remove specific caspases, stem cells have a differentiation defect. When we artificially increase caspase activity, the cells differentiated. When we increased the enzyme activity even more, the cell went into programmed cell death.”

In studying how caspases achieve this activity, he noted that the enzyme is a protease or molecular scissors that cleave or cut proteins at specific points. In particular, they found that caspase cleaves Nanog, one of the transcription factors key to maintaining the embryonic stem cells in their self-renewal state.

“This is a proof of concept study,” said Zwaka. “It shows a strong link between cell death and differentiation pathways. We hope this is a general concept that we can apply in other kinds of stem cells.”

The finding has implications for other kinds of studies. One is that manipulating programmed cell death pathways and caspase targets could help to revert a somatic or already differentiated cell into an embryonic stem cell-like fate. For instance manipulating Nanog at the caspase cleavage site might improve the effectiveness of this technique and enable elimination of the use of viruses, which can contaminate cell lines.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.cellstemcell.com/

Further reports about: Cell Embryonic Key Stem Zwaka caspase embryonic stem enzyme fate

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>