Transgenic Plants Don't Hurt Beneficial Bugs

That is welcome news for ecologists and farmers in the debate over GM plants. Much of the debate surrounding the use of GM crops focuses on their effect on organisms that aren't pests.

The research showed that GM plants expressing Bt insecticidal proteins are not toxic to a parasite that lives inside the caterpillar of the diamondback moth, a devastating worldwide vegetable pest. It was published in the May 27 issue of the online scientific journal PLoS One.

“The conservation of parasites is important for enhancing natural biocontrol that will help suppress pest populations as well as reduce the potential for the pest insects to develop resistance to the Bt,” explained Anthony Shelton, Cornell professor of entomology at the New York State Agricultural Experiment Station in Geneva, N.Y., who conducted the study with postdoctoral associate Mao Chen. “Our studies make it clear that Bt plants are a win-win situation to control pest insects and to enhance biocontrol and biodiversity.”

The Bt bacterium, which is not harmful to humans, has been used for decades as a leaf spray and since 1996, in GM plants, a method that has proven much more effective and is now more widely used. Both uses are approved by the U.S. Environmental Protection Agency. In 2007, Bt corn and cotton plants were grown in 22 countries on 104 million acres, according to Shelton.

“Few studies have examined the effect of Bt plants on parasites of caterpillars, but some of them have reported negative impacts,” said Chen, noting that the new research suggests that those negative findings were likely due to testing methods.

To separate out the effect of insecticides and Bt proteins on the caterpillar and parasite, the Cornell researchers isolated and bred strains of caterpillars that were resistant to Bt or a conventional or organic insecticide. Then the caterpillars were parasitized with a wasp that kills the caterpillar in nature.

The resistant caterpillars were then either fed GM plants expressing the Bt protein or non-GM plants sprayed with the Bt protein, conventional insecticides or organic insecticides.

The parasitized caterpillars that ate plants treated with conventional and organic insecticides to which they were resistant, survived and developed into moths because the parasite was killed by the insecticide the caterpillar ingested. However, when the caterpillar fed on the Bt-sprayed plants or Bt plants, the parasite was not affected and killed its host caterpillar when it emerged as an adult wasp, showing that Bt plants are not toxic to the parasite.

Other Cornell researchers involved in the study include Elizabeth Earle and Jun Cao from the Department of Plant Breeding and Genetics and Jian-Zhou Zhao and Hilda Collins from the Department of Entomology. The work was supported by a grant from the USAID Program for Biosafety Systems.

Media Contact

Blaine Friedlander newswise

More Information:

http://www.cornell.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors