Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitoid turns host into bodyguard

04.06.2008
Parasites can induce dramatic changes of behaviour in their host species. This behaviour is thought to be detrimental to the host, but beneficial to the parasite.

In a joint publication in PLoS One, researchers from the University of Amsterdam and University of Viçosa (Brazil) show evidence of spectacular behavioural changes induced by a parasitic wasp in the caterpillar of a moth species.

After the wasp has oviposited eggs in the body of the caterpillar, these develop into larvae that live on the body fluids of the caterpillar. After the wasp larvae crawl out of the caterpillar to pupate, the caterpillar acts as a bodyguard to defend them from predator attacks.

A research team from the Institute for Biodiversity and Ecosystem Dynamics (IBED) of the University of Amsterdam worked together with the Entomology section of the Federal University of Viçosa (Brazil) to study such behavioural changes induced by parasites. In a recent publication in the new electronic journal PLoS One, the researchers offer evidence that behavioural changes of the host are beneficial to the parasite in the field. In Brazil, the team studied the caterpillars of a moth that feed on leaves of the native guava tree and an exotic eucalyptus.

These small caterpillars are attacked by insect parasitoid wasps, which then quickly insert up to 80 eggs into them. Inside the caterpillar host, a cruel drama takes place: the eggs of the parasitoid hatch and the larvae feed on the body fluids of the host. The caterpillar continues feeding, moving and growing like its unparasitised brothers and sisters. When the parasitoid larvae are full-grown, they emerge together through the host’s skin, and start pupating nearby. Unlike many other combinations of host and parasitoid, the host remains alive and displays spectacular changes in its behaviour: it stops feeding and remains close to the parasitoid pupae.

Moreover, it defends the parasitoid pupae against approaching predators with violent head-swings (see films via link below). The caterpillar dies soon after the adult parasitoids emerge from their pupae, so there can be no benefit whatsoever for it. In contrast, unparasitised caterpillars do not show any of these behavioural changes.

The research team found that parasitoid pupae that were guarded by caterpillars in the field suffered half as much predation as those without a bodyguard. Hence, the behavioural changes of the host result in increased survival of the parasitoids due to the host acting as a bodyguard of the parasitoid pupae. Whereas it is still unclear how the parasitoid changes the behaviour of its host, it is tempting to speculate. The research team found that one or two parasitoid larvae remained behind in the host. Perhaps these larvae affect the behaviour of the caterpillar, and sacrifice themselves for the good of their brothers and sisters.

Cause or effect?

There are many examples of parasites that induce spectacular changes in the behaviour of their host. Flukes, for example, are thought to induce ants, their intermediate host, to move up onto blades of grass during the night and early morning. There they firmly attach themselves to the substrate with their mandibles, and are thus consumed by grazing sheep, the fluke’s final host. In contrast, uninfected ants return to their nests during the night and the cooler parts of the day. Another example of behavioural change is that of terrestrial insects, parasitised by hairworms, which commit suicide by jumping into water allowing the adult hairworms to reproduce. Behavioural changes like these are thought to be induced by the parasite so as to increase its transmission to the final host, but there are alternative explanations. It is possible, for example, that the hosts already behaved differently before becoming infected. Hence, infection is a consequence of different behaviour, not its cause. Increased transmission can also be called into question: the behavioural changes of the host may result in increased attacks by other non-host animals, and this would seriously decrease the probability of transmission. Increased transmission should therefore always be tested under natural conditions. The research of the Dutch and Brazilian researchers is the most complete and convincing case for induction of behavioural changes, clearly showing that it is the parasite that profits from it.

This research was supported by the Tropical Research division of the Netherlands Organisation for Scientific Research (NWO-WOTRO).

Publication information:
‘Parasitoid increases survival of its pupae by inducing hosts to fight predators’. Amir H. Grosman, Arne Janssen, Elaine F. de Brito, Eduardo G. Cordeiro, Felipe Colares, Juliana Oliveira Fonseca, Eraldo R. Lima, Angelo Pallini and Maurice W. Sabelis. PloS One, June 4, 2008.

The online article can be viewed via: http://www.plosone.org/doi/pone.0002276. This website also includes accompanying images.

Laura Erdtsieck | alfa
Further information:
http://www.plosone.org/doi/pone.0002276
http://www.uva.nl

Further reports about: Bodyguard Host Transmission induce larvae parasite parasitoid pupae

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>