Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential Therapy Discovered for Hypophosphatasia, a Congenital Form of Rickets

03.06.2008
Researchers at the Burnham Institute for Medical Research, led by José Luis Millán, Ph.D., have demonstrated in mice the first successful use of enzyme replacement therapy to prevent hypophosphatasia (HPP), a primary skeletal disease of genetic origin. This discovery lays the foundation for future clinical trials for HPP patients.

Rickets is a softening of the bones that most commonly results from a lack of vitamin D or calcium and from insufficient exposure to sunlight.

Hypophosphatasia is a rare, heritable form of rickets caused by mutations in a gene called TNAP, which is essential for the process that causes minerals such as calcium and phosphorus to be deposited in developing bones and teeth. The physical presentations of this disorder can vary depending on the specific mutation, with more severe symptoms occurring at a younger age of onset. The most severe form of the disease occurs at birth, which can present with absence of bone mineralization in utero, resulting in stillbirth.

Using a mouse model, José Luis Millán, Ph.D. tested the hypothesis that, when administered from birth, a bone-targeted form of the TNAP gene would ease the skeletal defects of HPP. The Millán laboratory, in collaboration with scientists from Enobia Pharma in Montreal, Canada and from the Shriners Hospitals for Children in St. Louis, Missouri, created a soluble form of human TNAP that had been shown to display a strong attraction to bone tissue. Upon injecting the enzyme into the fat layer under the skin of the mice, the treated mice maintained a healthy rate of growth and apparent well being, as well as normal bone mineral density (BMD) of the skull, femur and spine. In fact, complete preservation of skeletal and dental structures were observed after 15 days, and bone lesions were still not seen after 52 days of treatment.

... more about:
»HPP »Millán »skeletal

“While the biochemical mechanism that leads to skeletal and dental defects of HPP is now generally understood,” said Dr. Millán, “there is currently no established medical treatment.”

Given the success of this therapy in preventing HPP, current efforts in Dr. Millán’s laboratory are focused on reversing the bone defects in mice once the disease is quite advanced. Future clinical trials may reveal this as the first promising therapy for patients with this genetic disorder.

This study, published in the Journal of Bone and Mineral Research, was supported by grants from the National Institutes of Health, Enobia Pharma, Inc., and the Shriners Hospitals for Children.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham is one of the fastest growing research institutes in the country with operations in California and Florida. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Andrea Moser | newswise
Further information:
http://www.burnham.org

Further reports about: HPP Millán skeletal

More articles from Life Sciences:

nachricht Coat of proteins makes viruses more infectious and links them to Alzheimer's disease
27.05.2019 | Stockholm University

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

AI and high-performance computing extend evolution to superconductors

27.05.2019 | Information Technology

Meteor magnets in outer space

27.05.2019 | Physics and Astronomy

Coat of proteins makes viruses more infectious and links them to Alzheimer's disease

27.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>