Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammalian mechanism of time-place learning clarified

02.06.2008
We are all aware of the places you can better avoid in the dead of night. And we all know that the freshest, tastiest food can be bought at the open-air market early in the morning.

In the animal kingdom, too, it is of the utmost importance to circumvent certain places at certain times (due to predators) and to visit others at other times (due to the availability of food). Until recently, the exact way in which mammals established this link between time and place remained a mystery.

However, researchers at the University of Groningen have finally unravelled the secret. Their findings will be published in Current Biology on 3 June 2008.

The researchers began by observing how mice in the lab could be taught to connect time and place – the so-called ‘time-place learning’. Prof. Menno Gerkema, the last author of the article, explains that an attempt was made to emulate natural circumstances as much as possible. ‘Animals always have to weigh up the situation when gathering food. To them, food is never free. A mouse can always be seized by predators. We tried to incorporate that risk in our experiment.’

... more about:
»Gerkema »Passage »clock »time-place
Time-place learning
The researchers used a construction with three passages through which the mice could run. At the end of each passage, the mice could find food behind a platform. Depending on the time of day, however, an electric shock was applied through the platform. It soon became evident that the mice were perfectly capable of finding those places where food was freely available at certain times and of avoiding certain places where food could only be obtained at the cost of incurring an unpleasant shock. This finding was extraordinary in itself because, up to the present, no method of studying time-place learning in mammals had been constructed.
Biological clock
But what kind of mechanism do the mice use in this time-place learning? The researchers suspected that the mice made use of their biological clock, just as birds and bees do in time-place learning. To test this hypothesis, use was made of genetically modified mice that lack certain genes (called ‘Cry1’ and ‘Cry2’) so that they had to work without a biological clock. These mice turned out to be incapable of obtaining food in the passages at the appropriate moments. With this finding, the researchers have finally been able to ascertain that mammals make use of the biological clock in time-place learning.
Humans
People also learn to connect time and place. ‘A subconscious link between time and place is established in a great number of learning processes. If, for example, you cannot recall something, it helps to revisit the spot where the idea that you want to remember originated. The forming of associations between place and time helps us structure our memory.’ Gerkema surmises that time-place learning occurs in much the same way in humans as it does in mice, because both have roughly the same biological clock system.
Alzheimer’s disease
The researchers, Menno Gerkema and Eddy van der Zee, now wish to investigate how time-place learning changes as people grow older. Gerkema: ‘In humans, you see that the ability to connect time and place declines as one grows older. Some patients with Alzheimer’s disease completely lose their notion of time at a certain moment. This is a dramatic development, in view of the fact that they do not recognize the difference between day and night. That is why round-the-clock care is necessary and the patient usually has to be hospitalized.’ Insight into time-place learning may help in postponing this moment as long as possible.

Eelco Salverda | alfa
Further information:
http://www.rug.nl
http://images.cell.com/images/Edimages/CurrentBiology/May29/6467main.pdf

Further reports about: Gerkema Passage clock time-place

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>