Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altruism in social insects IS a family affair

30.05.2008
The contentious debate about why insects evolved to put the interests of the colony over the individual has been reignited by new research from the University of Leeds, showing that they do so to increase the chances that their genes will be passed on.

A team led by Dr Bill Hughes of the University’s Faculty of Biological Sciences studied 'kin selection' – the theory that an animal may pass on its genes by helping relatives to reproduce, because they share common genes, rather than by reproducing itself.

The concept of ‘kin selection’ was developed in 1964 by the evolutionary biologist Bill Hamilton, first proposed by Charles Darwin to explain, for example, why sterile workers evolved in social insect groups and why a honeybee would sacrifice its life to defend the colony. Charles Darwin recognized that such altruistic behaviour in highly social insect groups was at odds with his theory of natural selection, and Bill Hamilton’s theory of kin selection showed that this behaviour can evolve because it still fulfills the drive to pass on genes - but through relatives instead.

As such, high relatedness between insects has generally been seen as essential for the evolution of highly social behaviour and until recently, kin selection was widely accepted by the scientific community.

... more about:
»Hughes »Theory »Wilson »genes »relatedness »selection

But this paradigm was challenged in 2005 by the eminent academic E.O. Wilson, the founder of sociobiology, who pointed out that relatedness is rather low in some of today's social insects. He suggested that highly social behaviour evolves solely because individuals do better when they cooperate than when they live a solitary life - a controversial theory which not only conflicted with 45 years of scientific research, but which also sparked a highly charged debate between Wilson and Richard Dawkins, author of The Selfish Gene.

Dr Hughes and colleagues at the Universities of Sydney and Sussex tested the two alternative theories by examining the level of relatedness between females in colonies of bees, wasps and ants, determined by DNA fingerprinting techniques, and using statistical methods to look at levels of monogamy in the ancestral social insects when they evolved up to 100 million years ago.

If females were monogamous, mating with one male, this would mean the members of the colony are highly related, and so Hamilton’s theory would be correct. If they were polygamous, with the female mating with many males, relatedness would be lower and so Wilson may be right after all.

The research, published in the current issue of the prestigious academic journal, Science, found that in every group studied(1) ancestral females were found to be monogamous, providing the first evidence that kin selection is fundamental to the evolution of social insects.

Dr Hughes said: "We have produced the first conclusive evidence that kin selection explains the evolution of social insects and that Wilson's hypothesis is most probably wrong. By challenging something that we have based all our understanding on for 45 years, Wilson has forced us all to examine the theory again and assess the logic of the arguments. In a recent media interview, he issued a challenge to the scientific community to prove his theory wrong and whilst many felt it was, there hasn’t been any hard evidence until now.”

The research was carried out by Dr Hughes, Professor Ben Oldroyd of the University of Sydney, Associate Professor Madeleine Beekman of the University of Sydney and Professor Francis Ratnieks of the University of Sussex.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

Further reports about: Hughes Theory Wilson genes relatedness selection

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>