Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altruism in social insects IS a family affair

30.05.2008
The contentious debate about why insects evolved to put the interests of the colony over the individual has been reignited by new research from the University of Leeds, showing that they do so to increase the chances that their genes will be passed on.

A team led by Dr Bill Hughes of the University’s Faculty of Biological Sciences studied 'kin selection' – the theory that an animal may pass on its genes by helping relatives to reproduce, because they share common genes, rather than by reproducing itself.

The concept of ‘kin selection’ was developed in 1964 by the evolutionary biologist Bill Hamilton, first proposed by Charles Darwin to explain, for example, why sterile workers evolved in social insect groups and why a honeybee would sacrifice its life to defend the colony. Charles Darwin recognized that such altruistic behaviour in highly social insect groups was at odds with his theory of natural selection, and Bill Hamilton’s theory of kin selection showed that this behaviour can evolve because it still fulfills the drive to pass on genes - but through relatives instead.

As such, high relatedness between insects has generally been seen as essential for the evolution of highly social behaviour and until recently, kin selection was widely accepted by the scientific community.

... more about:
»Hughes »Theory »Wilson »genes »relatedness »selection

But this paradigm was challenged in 2005 by the eminent academic E.O. Wilson, the founder of sociobiology, who pointed out that relatedness is rather low in some of today's social insects. He suggested that highly social behaviour evolves solely because individuals do better when they cooperate than when they live a solitary life - a controversial theory which not only conflicted with 45 years of scientific research, but which also sparked a highly charged debate between Wilson and Richard Dawkins, author of The Selfish Gene.

Dr Hughes and colleagues at the Universities of Sydney and Sussex tested the two alternative theories by examining the level of relatedness between females in colonies of bees, wasps and ants, determined by DNA fingerprinting techniques, and using statistical methods to look at levels of monogamy in the ancestral social insects when they evolved up to 100 million years ago.

If females were monogamous, mating with one male, this would mean the members of the colony are highly related, and so Hamilton’s theory would be correct. If they were polygamous, with the female mating with many males, relatedness would be lower and so Wilson may be right after all.

The research, published in the current issue of the prestigious academic journal, Science, found that in every group studied(1) ancestral females were found to be monogamous, providing the first evidence that kin selection is fundamental to the evolution of social insects.

Dr Hughes said: "We have produced the first conclusive evidence that kin selection explains the evolution of social insects and that Wilson's hypothesis is most probably wrong. By challenging something that we have based all our understanding on for 45 years, Wilson has forced us all to examine the theory again and assess the logic of the arguments. In a recent media interview, he issued a challenge to the scientific community to prove his theory wrong and whilst many felt it was, there hasn’t been any hard evidence until now.”

The research was carried out by Dr Hughes, Professor Ben Oldroyd of the University of Sydney, Associate Professor Madeleine Beekman of the University of Sydney and Professor Francis Ratnieks of the University of Sussex.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

Further reports about: Hughes Theory Wilson genes relatedness selection

More articles from Life Sciences:

nachricht Coat of proteins makes viruses more infectious and links them to Alzheimer's disease
27.05.2019 | Stockholm University

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

AI and high-performance computing extend evolution to superconductors

27.05.2019 | Information Technology

Meteor magnets in outer space

27.05.2019 | Physics and Astronomy

Coat of proteins makes viruses more infectious and links them to Alzheimer's disease

27.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>