Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printed biochips

30.05.2008
Peptide arrays are powerful tools for developing new medical substances as well as for diagnosis and therapy techniques. A new production method based on laser printing will enable the potential of peptide arrays to be effectively utilized for the first time.

Peptides are protein fragments consisting of up to 50 amino acids. However, peptides with a length of 15 to 20 amino acids arranged in arrays are sufficient for drug research and for identifying pathogenic proteins. Unfortunately, the capacity of such arrays is limited.

A maximum of 10,000 peptides will fit onto a glass slide at present, but biochips with 100,000 peptides are needed in order to represent each of the approximately thousand proteins in a bacterium – in the form of 100 overlapping peptides – and a staggering 500,000 are required for a malaria pathogen. Another drawback is the price: An individual peptide spot costs around 5 euros, adding up to almost 50,000 euros for a full array.

In cooperation with developers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, scientists at the German Cancer Research Center (DKFZ) in Heidelberg have found a cheap way of mass-producing peptide arrays: printed biochips. “At present, peptide arrays are manufactured by a spotting technique that uses a robot to dab the individual amino acids onto a paper-like membrane,” explains Dr. Stefan Güttler of the IPA. “Trying to do this with a laser printer is something completely new.”

... more about:
»Array »BioChips »Peptide »Protein »acid »amino »amino acids

The project requirements were stringent, calling for printing on glass, rather than a flexible medium, and involving the use of 20 different toners – because peptides consist of 20 different amino acids which must be linked to form specific chains. The DKFZ scientists provided the bio-toner: encapsulated amino acids. During printing, the amino acid particles are first processed in a dry state. For a chemical reaction, however, they need to be dissolved. “We dissolve the amino acids by heating the carrier,” explains Dr. F. Ralf Bischoff of the DKFZ.

The toner particles melt, enabling the amino acids to couple with the carrier. The amino acid particles are printed layer by layer on the glass slide, exactly on top of one other, and subsequently linked. Compared to the state of art, printed peptide arrays are much more complex. They contain over 155,000 micro spots on a carrier measuring 20 by 20 cm, and can be manufactured much faster at a price that is at least 100 times lower than that of conventionally produced peptide arrays. The arrays can now be offered for a few cents per peptide.

The research teams were awarded the Stifterverband Science Prize 2008 for developing this manufacturing process for highly complex biochips. The work was funded internally and by the Federal Ministry of Education and Research (BMBF) and the VW Foundation.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN/bigimg/2008/rn05sfo1g.jsp
http://www.fraunhofer.de/EN/press/pi/2008/05/ResearchNews5s2008Topic1.jsp

Further reports about: Array BioChips Peptide Protein acid amino amino acids

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>